File size: 20,234 Bytes
c12a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 108,
   "id": "61e10139",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pickle\n",
    "import pretty_midi\n",
    "from music21 import *\n",
    "from midi2audio import FluidSynth"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "id": "1a2b28be",
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "from torch.nn import functional as F\n",
    "\n",
    "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
    "\n",
    "class GenerationRNN(nn.Module):\n",
    "    def __init__(self, input_size, hidden_size, output_size, n_layers=1):\n",
    "        super(GenerationRNN, self).__init__()\n",
    "        self.input_size = input_size\n",
    "        self.hidden_size = hidden_size\n",
    "        self.output_size = output_size\n",
    "        self.n_layers = n_layers\n",
    "        \n",
    "        self.embedding = nn.Embedding(input_size, hidden_size)\n",
    "        self.gru = nn.GRU(hidden_size, hidden_size, n_layers)\n",
    "        self.decoder = nn.Linear(hidden_size * n_layers, output_size)\n",
    "    \n",
    "    def forward(self, input, hidden):\n",
    "        # Creates embedding of the input texts\n",
    "        #print('initial input', input.size())\n",
    "        input = self.embedding(input.view(1, -1))\n",
    "        #print('input after embedding', input.size())\n",
    "        output, hidden = self.gru(input, hidden)\n",
    "        #print('output after gru', output.size())\n",
    "        #print('hidden after gru', hidden.size())\n",
    "        output = self.decoder(hidden.view(1, -1))\n",
    "        #print('output after decoder', output.size())\n",
    "        return output, hidden\n",
    "\n",
    "    def init_hidden(self):\n",
    "        return torch.zeros(self.n_layers, 1, self.hidden_size).to(device)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "id": "5b7120cf",
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict_multimomial(net, prime_seq, predict_len, temperature=0.8):\n",
    "    '''\n",
    "    Arguments:\n",
    "    prime_seq - priming sequence (converted t)\n",
    "    predict_len - number of notes to predict for after prime sequence\n",
    "    '''\n",
    "    hidden = net.init_hidden()\n",
    "\n",
    "    predicted = prime_seq.copy()\n",
    "    prime_seq = torch.tensor(prime_seq, dtype = torch.long).to(device)\n",
    "\n",
    "\n",
    "    # \"Building up\" the hidden state using the prime sequence\n",
    "    for p in range(len(prime_seq) - 1):\n",
    "        input = prime_seq[p]\n",
    "        _, hidden = net(input, hidden)\n",
    "    \n",
    "    # Last character of prime sequence\n",
    "    input = prime_seq[-1]\n",
    "    \n",
    "    # For every index to predict\n",
    "    for p in range(predict_len):\n",
    "\n",
    "        # Pass the inputs to the model - output has dimension n_pitches - scores for each of the possible characters\n",
    "        output, hidden = net(input, hidden)\n",
    "        # Sample from the network output as a multinomial distribution\n",
    "        output = output.data.view(-1).div(temperature).exp()\n",
    "        predicted_id = torch.multinomial(output, 1)\n",
    "\n",
    "        # Add predicted index to the list and use as next input\n",
    "        predicted.append(predicted_id.item()) \n",
    "        input = predicted_id\n",
    "\n",
    "    return predicted"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "id": "8ce30142",
   "metadata": {},
   "outputs": [],
   "source": [
    "file_path = './objects/model_cpu.pkl'\n",
    "with open(file_path, 'rb') as f:\n",
    "    model = pickle.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "id": "84a2ea9b",
   "metadata": {},
   "outputs": [],
   "source": [
    "file_path = './objects/int_to_note.pkl'\n",
    "with open(file_path, 'rb') as f:\n",
    "    int_to_note = pickle.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "id": "102cd217",
   "metadata": {},
   "outputs": [],
   "source": [
    "file_path = './objects/note_to_int.pkl'\n",
    "with open(file_path, 'rb') as f:\n",
    "    note_to_int = pickle.load(f)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "id": "07815507",
   "metadata": {},
   "outputs": [],
   "source": [
    "def create_midi(prediction_output):\n",
    "    \"\"\" convert the output from the prediction to notes and create a midi file\n",
    "        from the notes \"\"\"\n",
    "    offset = 0\n",
    "    output_notes = []\n",
    "\n",
    "    # create note and chord objects based on the values generated by the model\n",
    "    for pattern in prediction_output:\n",
    "        # pattern is a chord\n",
    "        if ('.' in pattern) or pattern.isdigit():\n",
    "            notes_in_chord = pattern.split('.')\n",
    "            notes = []\n",
    "            for current_note in notes_in_chord:\n",
    "                new_note = note.Note(int(current_note))\n",
    "                new_note.storedInstrument = instrument.Piano()\n",
    "                notes.append(new_note)\n",
    "            new_chord = chord.Chord(notes)\n",
    "            new_chord.offset = offset\n",
    "            output_notes.append(new_chord)\n",
    "        # pattern is a note\n",
    "        else:\n",
    "            new_note = note.Note(pattern)\n",
    "            new_note.offset = offset\n",
    "            new_note.storedInstrument = instrument.Piano()\n",
    "            output_notes.append(new_note)\n",
    "\n",
    "        # increase offset each iteration so that notes do not stack\n",
    "        offset += 0.5\n",
    "\n",
    "    midi_stream = stream.Stream(output_notes)\n",
    "\n",
    "    return midi_stream"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 113,
   "id": "ad197703",
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_note_names(midi):\n",
    "    s2 = instrument.partitionByInstrument(midi)\n",
    "\n",
    "    piano_part = None\n",
    "    # Filter for only the piano part\n",
    "    instr = instrument.Piano\n",
    "    for part in s2:\n",
    "        if isinstance(part.getInstrument(), instr):\n",
    "            piano_part = part\n",
    "\n",
    "    notes_song = []\n",
    "    if not piano_part: # Some songs somehow have no piano parts\n",
    "        # Just take the first part\n",
    "        piano_part = s2[0]\n",
    "    \n",
    "    for element in piano_part:\n",
    "        if isinstance(element, note.Note):\n",
    "            # Return the pitch of the single note\n",
    "            notes_song.append(str(element.pitch))\n",
    "        elif isinstance(element, chord.Chord):\n",
    "            # Returns the normal order of a Chord represented in a list of integers\n",
    "            notes_song.append('.'.join(str(n) for n in element.normalOrder))\n",
    "            \n",
    "    return notes_song"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 114,
   "id": "0d1140d7",
   "metadata": {},
   "outputs": [],
   "source": [
    "def process_input(input_midi_file, input_randomness, input_duration):\n",
    "    midi = converter.parse(input_midi_file)\n",
    "    note_names = get_note_names(midi)\n",
    "    int_notes = [note_to_int[note_name] for note_name in note_names]\n",
    "    \n",
    "    generated_seq_multinomial = predict_multimomial(model, int_notes, predict_len = 100, temperature = 2.2)\n",
    "    generated_seq_multinomial = [int_to_note[e] for e in generated_seq_multinomial]\n",
    "    pred_midi_multinomial = create_midi(generated_seq_multinomial)\n",
    "    \n",
    "    pred_midi_multinomial.write('midi', fp='result.midi')\n",
    "    \n",
    "    # sound_font = \"/usr/share/sounds/sf2/FluidR3_GM.sf2\"\n",
    "    FluidSynth().midi_to_audio('result.midi', 'result.wav')\n",
    "    return 'result.wav', 'result.midi'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 115,
   "id": "7227d54b",
   "metadata": {},
   "outputs": [
    {
     "ename": "FileNotFoundError",
     "evalue": "[Errno 2] No such file or directory: 'fluidsynth'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
      "Input \u001b[0;32mIn [115]\u001b[0m, in \u001b[0;36m<cell line: 2>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      1\u001b[0m example_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m/Users/dmytrolopushanskyy/Documents/ucu/music-generation/examples/mozart.midi\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 2\u001b[0m \u001b[43mprocess_input\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexample_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "Input \u001b[0;32mIn [114]\u001b[0m, in \u001b[0;36mprocess_input\u001b[0;34m(input_midi_file, input_randomness, input_duration)\u001b[0m\n\u001b[1;32m     10\u001b[0m pred_midi_multinomial\u001b[38;5;241m.\u001b[39mwrite(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmidi\u001b[39m\u001b[38;5;124m'\u001b[39m, fp\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresult.midi\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[1;32m     12\u001b[0m sound_font \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m/usr/share/sounds/sf2/FluidR3_GM.sf2\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m---> 13\u001b[0m \u001b[43mFluidSynth\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmidi_to_audio\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mresult.midi\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mresult.wav\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m     14\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresult.wav\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresult.midi\u001b[39m\u001b[38;5;124m'\u001b[39m\n",
      "File \u001b[0;32m~/miniconda3/envs/hugface-demo/lib/python3.9/site-packages/midi2audio.py:46\u001b[0m, in \u001b[0;36mFluidSynth.midi_to_audio\u001b[0;34m(self, midi_file, audio_file)\u001b[0m\n\u001b[1;32m     45\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mmidi_to_audio\u001b[39m(\u001b[38;5;28mself\u001b[39m, midi_file, audio_file):\n\u001b[0;32m---> 46\u001b[0m     \u001b[43msubprocess\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcall\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfluidsynth\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m-ni\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msound_font\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmidi_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m-F\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maudio_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m-r\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mstr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msample_rate\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/miniconda3/envs/hugface-demo/lib/python3.9/subprocess.py:349\u001b[0m, in \u001b[0;36mcall\u001b[0;34m(timeout, *popenargs, **kwargs)\u001b[0m\n\u001b[1;32m    341\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mcall\u001b[39m(\u001b[38;5;241m*\u001b[39mpopenargs, timeout\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m    342\u001b[0m     \u001b[38;5;124;03m\"\"\"Run command with arguments.  Wait for command to complete or\u001b[39;00m\n\u001b[1;32m    343\u001b[0m \u001b[38;5;124;03m    timeout, then return the returncode attribute.\u001b[39;00m\n\u001b[1;32m    344\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m    347\u001b[0m \u001b[38;5;124;03m    retcode = call([\"ls\", \"-l\"])\u001b[39;00m\n\u001b[1;32m    348\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m--> 349\u001b[0m     \u001b[38;5;28;01mwith\u001b[39;00m \u001b[43mPopen\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mpopenargs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mas\u001b[39;00m p:\n\u001b[1;32m    350\u001b[0m         \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m    351\u001b[0m             \u001b[38;5;28;01mreturn\u001b[39;00m p\u001b[38;5;241m.\u001b[39mwait(timeout\u001b[38;5;241m=\u001b[39mtimeout)\n",
      "File \u001b[0;32m~/miniconda3/envs/hugface-demo/lib/python3.9/subprocess.py:951\u001b[0m, in \u001b[0;36mPopen.__init__\u001b[0;34m(self, args, bufsize, executable, stdin, stdout, stderr, preexec_fn, close_fds, shell, cwd, env, universal_newlines, startupinfo, creationflags, restore_signals, start_new_session, pass_fds, user, group, extra_groups, encoding, errors, text, umask)\u001b[0m\n\u001b[1;32m    947\u001b[0m         \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtext_mode:\n\u001b[1;32m    948\u001b[0m             \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstderr \u001b[38;5;241m=\u001b[39m io\u001b[38;5;241m.\u001b[39mTextIOWrapper(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstderr,\n\u001b[1;32m    949\u001b[0m                     encoding\u001b[38;5;241m=\u001b[39mencoding, errors\u001b[38;5;241m=\u001b[39merrors)\n\u001b[0;32m--> 951\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_execute_child\u001b[49m\u001b[43m(\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexecutable\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpreexec_fn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mclose_fds\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    952\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mpass_fds\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcwd\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43menv\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    953\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mstartupinfo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcreationflags\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mshell\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    954\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mp2cread\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mp2cwrite\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    955\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mc2pread\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mc2pwrite\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    956\u001b[0m \u001b[43m                        \u001b[49m\u001b[43merrread\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrwrite\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    957\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mrestore_signals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    958\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mgid\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgids\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muid\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mumask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m    959\u001b[0m \u001b[43m                        \u001b[49m\u001b[43mstart_new_session\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    960\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m:\n\u001b[1;32m    961\u001b[0m     \u001b[38;5;66;03m# Cleanup if the child failed starting.\u001b[39;00m\n\u001b[1;32m    962\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m f \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mfilter\u001b[39m(\u001b[38;5;28;01mNone\u001b[39;00m, (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstdin, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstdout, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mstderr)):\n",
      "File \u001b[0;32m~/miniconda3/envs/hugface-demo/lib/python3.9/subprocess.py:1821\u001b[0m, in \u001b[0;36mPopen._execute_child\u001b[0;34m(self, args, executable, preexec_fn, close_fds, pass_fds, cwd, env, startupinfo, creationflags, shell, p2cread, p2cwrite, c2pread, c2pwrite, errread, errwrite, restore_signals, gid, gids, uid, umask, start_new_session)\u001b[0m\n\u001b[1;32m   1819\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m errno_num \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m   1820\u001b[0m         err_msg \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mstrerror(errno_num)\n\u001b[0;32m-> 1821\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m child_exception_type(errno_num, err_msg, err_filename)\n\u001b[1;32m   1822\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m child_exception_type(err_msg)\n",
      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'fluidsynth'"
     ]
    }
   ],
   "source": [
    "example_path = '/Users/dmytrolopushanskyy/Documents/ucu/music-generation/examples/mozart.midi'\n",
    "process_input(example_path, 2, 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "01491a9f",
   "metadata": {},
   "outputs": [],
   "source": [
    "midi_file_desc = \"\"\"\n",
    "This model allows to generate music based on your input. \n",
    "Please upload a MIDI file below, choose music randomness and duration. Enjoy!\n",
    "\"\"\"\n",
    "\n",
    "article = \"\"\"# Music Generation\n",
    "This project has been created by the students of Ukrainian Catholic University for our ML course.\n",
    "\n",
    "We are using a GRU model to output new notes based on the given input. You can find more information at our Git repo: https://github.com/DmytroLopushanskyy/music-generation\n",
    "We are using a language model to create music by treating a musical standard MIDI a simple text, with tokens for note values, note duration, and separations to denote movement forward in time.\n",
    "\"\"\"\n",
    "\n",
    "iface = gr.Interface(\n",
    "    fn=process_input, \n",
    "    inputs=[\n",
    "        gr.inputs.File(label=midi_file_desc),\n",
    "        gr.inputs.Slider(0, 250, default=100, step=50),\n",
    "        gr.inputs.Radio([10, 20, 30], type=\"value\", default=20)\n",
    "        ], \n",
    "    outputs=[\"audio\", \"file\"],\n",
    "    article=article,\n",
    "    examples=['examples/mozart.midi']\n",
    ")\n",
    "\n",
    "iface.launch()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}