metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet-50-2024_09_13-batch-size32_epochs150_freeze
results: []
resnet-50-2024_09_13-batch-size32_epochs150_freeze
This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: nan
- F1 Micro: 0.0002
- F1 Macro: 0.0002
- Roc Auc: 0.4995
- Accuracy: 0.0003
- Learning Rate: 0.0001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | Roc Auc | Accuracy | Rate |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 273 | nan | 0.0 | 0.0 | 0.4995 | 0.0 | 0.001 |
0.0 | 2.0 | 546 | nan | 0.0003 | 0.0004 | 0.4993 | 0.0007 | 0.001 |
0.0 | 3.0 | 819 | nan | 0.0008 | 0.0010 | 0.4994 | 0.0017 | 0.001 |
0.0 | 4.0 | 1092 | nan | 0.0 | 0.0 | 0.4991 | 0.0 | 0.001 |
0.0 | 5.0 | 1365 | nan | 0.0005 | 0.0006 | 0.4994 | 0.0010 | 0.001 |
0.0 | 6.0 | 1638 | nan | 0.0002 | 0.0002 | 0.4993 | 0.0003 | 0.001 |
0.0 | 7.0 | 1911 | nan | 0.0 | 0.0 | 0.4993 | 0.0 | 0.0001 |
0.0 | 8.0 | 2184 | nan | 0.0002 | 0.0002 | 0.4993 | 0.0003 | 0.0001 |
0.0 | 9.0 | 2457 | nan | 0.0 | 0.0 | 0.4994 | 0.0 | 0.0001 |
0.0 | 10.0 | 2730 | nan | 0.0003 | 0.0004 | 0.4994 | 0.0007 | 0.0001 |
0.0 | 11.0 | 3003 | nan | 0.0 | 0.0 | 0.4994 | 0.0 | 0.0001 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1