lombardata's picture
Evaluation on the test set completed on 2024_09_13.
361dec1 verified
|
raw
history blame
2.7 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: resnet-50-2024_09_13-batch-size32_epochs150_freeze
    results: []

resnet-50-2024_09_13-batch-size32_epochs150_freeze

This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan
  • F1 Micro: 0.0002
  • F1 Macro: 0.0002
  • Roc Auc: 0.4995
  • Accuracy: 0.0003
  • Learning Rate: 0.0001

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Micro F1 Macro Roc Auc Accuracy Rate
No log 1.0 273 nan 0.0 0.0 0.4995 0.0 0.001
0.0 2.0 546 nan 0.0003 0.0004 0.4993 0.0007 0.001
0.0 3.0 819 nan 0.0008 0.0010 0.4994 0.0017 0.001
0.0 4.0 1092 nan 0.0 0.0 0.4991 0.0 0.001
0.0 5.0 1365 nan 0.0005 0.0006 0.4994 0.0010 0.001
0.0 6.0 1638 nan 0.0002 0.0002 0.4993 0.0003 0.001
0.0 7.0 1911 nan 0.0 0.0 0.4993 0.0 0.0001
0.0 8.0 2184 nan 0.0002 0.0002 0.4993 0.0003 0.0001
0.0 9.0 2457 nan 0.0 0.0 0.4994 0.0 0.0001
0.0 10.0 2730 nan 0.0003 0.0004 0.4994 0.0007 0.0001
0.0 11.0 3003 nan 0.0 0.0 0.4994 0.0 0.0001

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1