File size: 10,708 Bytes
2e3f7df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
model-index:
- name: drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# drone-DinoVdeau-from-probs-large-2024_11_15-batch-size64_freeze_probs

This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4672
- Rmse: 0.1553
- Mae: 0.1147
- Kl Divergence: 0.3577
- Explained Variance: 0.4654
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rmse   | Mae    | Kl Divergence | Explained Variance | Rate   |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------------:|:------------------:|:------:|
| No log        | 1.0   | 110  | 0.5006          | 0.1904 | 0.1552 | 0.1025        | 0.3284             | 0.001  |
| No log        | 2.0   | 220  | 0.4755          | 0.1681 | 0.1245 | 0.5180        | 0.3932             | 0.001  |
| No log        | 3.0   | 330  | 0.4745          | 0.1675 | 0.1227 | 0.6862        | 0.3975             | 0.001  |
| No log        | 4.0   | 440  | 0.4742          | 0.1672 | 0.1255 | 0.3212        | 0.4024             | 0.001  |
| 0.5081        | 5.0   | 550  | 0.4725          | 0.1653 | 0.1224 | 0.5072        | 0.4118             | 0.001  |
| 0.5081        | 6.0   | 660  | 0.4726          | 0.1657 | 0.1216 | 0.6710        | 0.4101             | 0.001  |
| 0.5081        | 7.0   | 770  | 0.4732          | 0.1655 | 0.1255 | 0.3162        | 0.4183             | 0.001  |
| 0.5081        | 8.0   | 880  | 0.4728          | 0.1651 | 0.1260 | 0.2719        | 0.4234             | 0.001  |
| 0.5081        | 9.0   | 990  | 0.4708          | 0.1639 | 0.1206 | 0.6393        | 0.4237             | 0.001  |
| 0.4668        | 10.0  | 1100 | 0.4733          | 0.1654 | 0.1230 | 0.5359        | 0.4151             | 0.001  |
| 0.4668        | 11.0  | 1210 | 0.4716          | 0.1647 | 0.1253 | 0.2479        | 0.4305             | 0.001  |
| 0.4668        | 12.0  | 1320 | 0.4708          | 0.1631 | 0.1244 | 0.3119        | 0.4358             | 0.001  |
| 0.4668        | 13.0  | 1430 | 0.4715          | 0.1635 | 0.1230 | 0.3694        | 0.4274             | 0.001  |
| 0.4641        | 14.0  | 1540 | 0.4721          | 0.1653 | 0.1216 | 0.5592        | 0.4134             | 0.001  |
| 0.4641        | 15.0  | 1650 | 0.4701          | 0.1628 | 0.1213 | 0.4936        | 0.4314             | 0.001  |
| 0.4641        | 16.0  | 1760 | 0.4719          | 0.1646 | 0.1229 | 0.2820        | 0.4328             | 0.001  |
| 0.4641        | 17.0  | 1870 | 0.4693          | 0.1621 | 0.1200 | 0.5294        | 0.4332             | 0.001  |
| 0.4641        | 18.0  | 1980 | 0.4710          | 0.1635 | 0.1216 | 0.4093        | 0.4294             | 0.001  |
| 0.4618        | 19.0  | 2090 | 0.4698          | 0.1622 | 0.1219 | 0.2918        | 0.4388             | 0.001  |
| 0.4618        | 20.0  | 2200 | 0.4692          | 0.1617 | 0.1190 | 0.4772        | 0.4355             | 0.001  |
| 0.4618        | 21.0  | 2310 | 0.4683          | 0.1606 | 0.1204 | 0.4336        | 0.4424             | 0.001  |
| 0.4618        | 22.0  | 2420 | 0.4724          | 0.1650 | 0.1183 | 0.7962        | 0.4233             | 0.001  |
| 0.4613        | 23.0  | 2530 | 0.4714          | 0.1641 | 0.1223 | 0.2854        | 0.4354             | 0.001  |
| 0.4613        | 24.0  | 2640 | 0.4707          | 0.1633 | 0.1207 | 0.4206        | 0.4280             | 0.001  |
| 0.4613        | 25.0  | 2750 | 0.4679          | 0.1606 | 0.1185 | 0.5436        | 0.4416             | 0.001  |
| 0.4613        | 26.0  | 2860 | 0.4708          | 0.1634 | 0.1192 | 0.4964        | 0.4268             | 0.001  |
| 0.4613        | 27.0  | 2970 | 0.4695          | 0.1625 | 0.1185 | 0.6399        | 0.4301             | 0.001  |
| 0.4607        | 28.0  | 3080 | 0.4701          | 0.1624 | 0.1184 | 0.5737        | 0.4324             | 0.001  |
| 0.4607        | 29.0  | 3190 | 0.4699          | 0.1624 | 0.1200 | 0.4459        | 0.4324             | 0.001  |
| 0.4607        | 30.0  | 3300 | 0.4723          | 0.1643 | 0.1254 | 0.2726        | 0.4308             | 0.001  |
| 0.4607        | 31.0  | 3410 | 0.4696          | 0.1622 | 0.1184 | 0.5308        | 0.4313             | 0.001  |
| 0.4604        | 32.0  | 3520 | 0.4668          | 0.1593 | 0.1175 | 0.4200        | 0.4508             | 0.0001 |
| 0.4604        | 33.0  | 3630 | 0.4663          | 0.1587 | 0.1177 | 0.3529        | 0.4565             | 0.0001 |
| 0.4604        | 34.0  | 3740 | 0.4667          | 0.1592 | 0.1181 | 0.3588        | 0.4542             | 0.0001 |
| 0.4604        | 35.0  | 3850 | 0.4659          | 0.1584 | 0.1160 | 0.4813        | 0.4545             | 0.0001 |
| 0.4604        | 36.0  | 3960 | 0.4658          | 0.1581 | 0.1173 | 0.3504        | 0.4594             | 0.0001 |
| 0.4565        | 37.0  | 4070 | 0.4654          | 0.1578 | 0.1158 | 0.3919        | 0.4608             | 0.0001 |
| 0.4565        | 38.0  | 4180 | 0.4655          | 0.1580 | 0.1166 | 0.4058        | 0.4583             | 0.0001 |
| 0.4565        | 39.0  | 4290 | 0.4658          | 0.1585 | 0.1174 | 0.4118        | 0.4567             | 0.0001 |
| 0.4565        | 40.0  | 4400 | 0.4656          | 0.1579 | 0.1170 | 0.3564        | 0.4607             | 0.0001 |
| 0.4552        | 41.0  | 4510 | 0.4657          | 0.1582 | 0.1171 | 0.3573        | 0.4598             | 0.0001 |
| 0.4552        | 42.0  | 4620 | 0.4652          | 0.1579 | 0.1155 | 0.5042        | 0.4587             | 0.0001 |
| 0.4552        | 43.0  | 4730 | 0.4651          | 0.1575 | 0.1157 | 0.4462        | 0.4613             | 0.0001 |
| 0.4552        | 44.0  | 4840 | 0.4654          | 0.1579 | 0.1166 | 0.4236        | 0.4604             | 0.0001 |
| 0.4552        | 45.0  | 4950 | 0.4649          | 0.1574 | 0.1151 | 0.4510        | 0.4625             | 0.0001 |
| 0.4538        | 46.0  | 5060 | 0.4648          | 0.1575 | 0.1157 | 0.4490        | 0.4619             | 0.0001 |
| 0.4538        | 47.0  | 5170 | 0.4649          | 0.1574 | 0.1152 | 0.4751        | 0.4615             | 0.0001 |
| 0.4538        | 48.0  | 5280 | 0.4648          | 0.1575 | 0.1151 | 0.5305        | 0.4631             | 0.0001 |
| 0.4538        | 49.0  | 5390 | 0.4648          | 0.1574 | 0.1154 | 0.4799        | 0.4630             | 0.0001 |
| 0.4532        | 50.0  | 5500 | 0.4650          | 0.1572 | 0.1172 | 0.2825        | 0.4694             | 0.0001 |
| 0.4532        | 51.0  | 5610 | 0.4656          | 0.1582 | 0.1151 | 0.4879        | 0.4573             | 0.0001 |
| 0.4532        | 52.0  | 5720 | 0.4643          | 0.1566 | 0.1155 | 0.4199        | 0.4674             | 0.0001 |
| 0.4532        | 53.0  | 5830 | 0.4644          | 0.1569 | 0.1156 | 0.3880        | 0.4673             | 0.0001 |
| 0.4532        | 54.0  | 5940 | 0.4646          | 0.1569 | 0.1148 | 0.4229        | 0.4654             | 0.0001 |
| 0.4526        | 55.0  | 6050 | 0.4644          | 0.1569 | 0.1159 | 0.4009        | 0.4659             | 0.0001 |
| 0.4526        | 56.0  | 6160 | 0.4647          | 0.1572 | 0.1164 | 0.3405        | 0.4660             | 0.0001 |
| 0.4526        | 57.0  | 6270 | 0.4645          | 0.1569 | 0.1152 | 0.4188        | 0.4661             | 0.0001 |
| 0.4526        | 58.0  | 6380 | 0.4651          | 0.1576 | 0.1164 | 0.3079        | 0.4659             | 0.0001 |
| 0.4526        | 59.0  | 6490 | 0.4645          | 0.1570 | 0.1150 | 0.4339        | 0.4654             | 1e-05  |
| 0.4514        | 60.0  | 6600 | 0.4642          | 0.1566 | 0.1150 | 0.3894        | 0.4679             | 1e-05  |
| 0.4514        | 61.0  | 6710 | 0.4639          | 0.1563 | 0.1146 | 0.4145        | 0.4693             | 1e-05  |
| 0.4514        | 62.0  | 6820 | 0.4641          | 0.1565 | 0.1148 | 0.4064        | 0.4686             | 1e-05  |
| 0.4514        | 63.0  | 6930 | 0.4643          | 0.1565 | 0.1149 | 0.3542        | 0.4698             | 1e-05  |
| 0.4511        | 64.0  | 7040 | 0.4640          | 0.1564 | 0.1150 | 0.3718        | 0.4702             | 1e-05  |
| 0.4511        | 65.0  | 7150 | 0.4641          | 0.1565 | 0.1152 | 0.4128        | 0.4680             | 1e-05  |
| 0.4511        | 66.0  | 7260 | 0.4644          | 0.1570 | 0.1145 | 0.4988        | 0.4658             | 1e-05  |
| 0.4511        | 67.0  | 7370 | 0.4638          | 0.1562 | 0.1151 | 0.4122        | 0.4697             | 1e-05  |
| 0.4511        | 68.0  | 7480 | 0.4640          | 0.1565 | 0.1144 | 0.4579        | 0.4674             | 1e-05  |
| 0.4508        | 69.0  | 7590 | 0.4638          | 0.1561 | 0.1143 | 0.4197        | 0.4702             | 1e-05  |
| 0.4508        | 70.0  | 7700 | 0.4639          | 0.1563 | 0.1145 | 0.4286        | 0.4695             | 1e-05  |
| 0.4508        | 71.0  | 7810 | 0.4641          | 0.1563 | 0.1153 | 0.3542        | 0.4708             | 1e-05  |
| 0.4508        | 72.0  | 7920 | 0.4642          | 0.1566 | 0.1147 | 0.4250        | 0.4681             | 1e-05  |
| 0.4505        | 73.0  | 8030 | 0.4638          | 0.1561 | 0.1140 | 0.4397        | 0.4700             | 1e-05  |
| 0.4505        | 74.0  | 8140 | 0.4638          | 0.1563 | 0.1145 | 0.4437        | 0.4689             | 1e-05  |
| 0.4505        | 75.0  | 8250 | 0.4638          | 0.1561 | 0.1145 | 0.4049        | 0.4705             | 1e-05  |
| 0.4505        | 76.0  | 8360 | 0.4640          | 0.1565 | 0.1141 | 0.4926        | 0.4675             | 0.0000 |
| 0.4505        | 77.0  | 8470 | 0.4639          | 0.1562 | 0.1142 | 0.4427        | 0.4695             | 0.0000 |
| 0.4505        | 78.0  | 8580 | 0.4639          | 0.1563 | 0.1145 | 0.4293        | 0.4692             | 0.0000 |
| 0.4505        | 79.0  | 8690 | 0.4641          | 0.1564 | 0.1147 | 0.3765        | 0.4700             | 0.0000 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1