File size: 8,801 Bytes
5726e4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
model-index:
- name: bd_ortho-DinoVdeau-large-2024_11_27-batch-size64_freeze_probs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bd_ortho-DinoVdeau-large-2024_11_27-batch-size64_freeze_probs

This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4551
- Rmse: 0.0866
- Mae: 0.0630
- Kl Divergence: 0.1147
- Explained Variance: 0.6593
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rmse   | Mae    | Kl Divergence | Explained Variance | Rate   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------------:|:------------------:|:------:|
| No log        | 1.0   | 221   | 0.4634          | 0.1018 | 0.0760 | 0.0696        | 0.5492             | 0.001  |
| No log        | 2.0   | 442   | 0.4593          | 0.0952 | 0.0716 | 0.0038        | 0.6113             | 0.001  |
| 0.5185        | 3.0   | 663   | 0.4574          | 0.0918 | 0.0670 | 0.0583        | 0.6245             | 0.001  |
| 0.5185        | 4.0   | 884   | 0.4595          | 0.0955 | 0.0713 | -0.0650       | 0.6130             | 0.001  |
| 0.4806        | 5.0   | 1105  | 0.4593          | 0.0954 | 0.0702 | -0.0835       | 0.6206             | 0.001  |
| 0.4806        | 6.0   | 1326  | 0.4608          | 0.0977 | 0.0728 | -0.0705       | 0.6041             | 0.001  |
| 0.4786        | 7.0   | 1547  | 0.4581          | 0.0927 | 0.0683 | -0.0044       | 0.6283             | 0.001  |
| 0.4786        | 8.0   | 1768  | 0.4573          | 0.0916 | 0.0680 | 0.0799        | 0.6277             | 0.001  |
| 0.4786        | 9.0   | 1989  | 0.4594          | 0.0947 | 0.0706 | 0.0233        | 0.6196             | 0.001  |
| 0.4776        | 10.0  | 2210  | 0.4577          | 0.0918 | 0.0675 | 0.0885        | 0.6293             | 0.001  |
| 0.4776        | 11.0  | 2431  | 0.4564          | 0.0898 | 0.0662 | 0.1296        | 0.6422             | 0.001  |
| 0.4772        | 12.0  | 2652  | 0.4572          | 0.0913 | 0.0677 | -0.0061       | 0.6386             | 0.001  |
| 0.4772        | 13.0  | 2873  | 0.4623          | 0.1002 | 0.0747 | -0.2060       | 0.6186             | 0.001  |
| 0.4769        | 14.0  | 3094  | 0.4578          | 0.0925 | 0.0678 | -0.0371       | 0.6346             | 0.001  |
| 0.4769        | 15.0  | 3315  | 0.4575          | 0.0917 | 0.0667 | 0.0458        | 0.6340             | 0.001  |
| 0.4766        | 16.0  | 3536  | 0.4579          | 0.0926 | 0.0680 | 0.0151        | 0.6277             | 0.001  |
| 0.4766        | 17.0  | 3757  | 0.4592          | 0.0949 | 0.0702 | -0.0679       | 0.6246             | 0.001  |
| 0.4766        | 18.0  | 3978  | 0.4557          | 0.0887 | 0.0651 | 0.0421        | 0.6493             | 0.0001 |
| 0.4758        | 19.0  | 4199  | 0.4556          | 0.0885 | 0.0647 | 0.0468        | 0.6508             | 0.0001 |
| 0.4758        | 20.0  | 4420  | 0.4555          | 0.0884 | 0.0648 | 0.0405        | 0.6518             | 0.0001 |
| 0.4741        | 21.0  | 4641  | 0.4555          | 0.0884 | 0.0650 | 0.0475        | 0.6533             | 0.0001 |
| 0.4741        | 22.0  | 4862  | 0.4555          | 0.0883 | 0.0646 | 0.0570        | 0.6535             | 0.0001 |
| 0.4738        | 23.0  | 5083  | 0.4551          | 0.0874 | 0.0641 | 0.0887        | 0.6570             | 0.0001 |
| 0.4738        | 24.0  | 5304  | 0.4552          | 0.0878 | 0.0642 | 0.0555        | 0.6553             | 0.0001 |
| 0.4736        | 25.0  | 5525  | 0.4552          | 0.0878 | 0.0645 | 0.0238        | 0.6582             | 0.0001 |
| 0.4736        | 26.0  | 5746  | 0.4557          | 0.0885 | 0.0646 | 0.0409        | 0.6572             | 0.0001 |
| 0.4736        | 27.0  | 5967  | 0.4551          | 0.0876 | 0.0639 | 0.0548        | 0.6576             | 0.0001 |
| 0.4731        | 28.0  | 6188  | 0.4551          | 0.0876 | 0.0642 | 0.0273        | 0.6588             | 0.0001 |
| 0.4731        | 29.0  | 6409  | 0.4548          | 0.0869 | 0.0634 | 0.0744        | 0.6618             | 0.0001 |
| 0.4727        | 30.0  | 6630  | 0.4549          | 0.0873 | 0.0636 | 0.0492        | 0.6595             | 0.0001 |
| 0.4727        | 31.0  | 6851  | 0.4548          | 0.0869 | 0.0632 | 0.0688        | 0.6613             | 0.0001 |
| 0.4732        | 32.0  | 7072  | 0.4550          | 0.0874 | 0.0639 | 0.0271        | 0.6602             | 0.0001 |
| 0.4732        | 33.0  | 7293  | 0.4554          | 0.0882 | 0.0647 | -0.0174       | 0.6580             | 0.0001 |
| 0.4725        | 34.0  | 7514  | 0.4546          | 0.0866 | 0.0628 | 0.1094        | 0.6616             | 0.0001 |
| 0.4725        | 35.0  | 7735  | 0.4550          | 0.0874 | 0.0639 | 0.0571        | 0.6583             | 0.0001 |
| 0.4725        | 36.0  | 7956  | 0.4548          | 0.0869 | 0.0629 | 0.1453        | 0.6616             | 0.0001 |
| 0.4727        | 37.0  | 8177  | 0.4553          | 0.0881 | 0.0645 | -0.0152       | 0.6587             | 0.0001 |
| 0.4727        | 38.0  | 8398  | 0.4548          | 0.0870 | 0.0636 | 0.0490        | 0.6613             | 0.0001 |
| 0.4727        | 39.0  | 8619  | 0.4548          | 0.0870 | 0.0631 | 0.0726        | 0.6610             | 0.0001 |
| 0.4727        | 40.0  | 8840  | 0.4548          | 0.0870 | 0.0632 | 0.0637        | 0.6605             | 0.0001 |
| 0.4721        | 41.0  | 9061  | 0.4547          | 0.0869 | 0.0634 | 0.0390        | 0.6628             | 1e-05  |
| 0.4721        | 42.0  | 9282  | 0.4544          | 0.0862 | 0.0628 | 0.1115        | 0.6657             | 1e-05  |
| 0.4721        | 43.0  | 9503  | 0.4546          | 0.0866 | 0.0632 | 0.0533        | 0.6646             | 1e-05  |
| 0.4721        | 44.0  | 9724  | 0.4545          | 0.0864 | 0.0625 | 0.1350        | 0.6648             | 1e-05  |
| 0.4721        | 45.0  | 9945  | 0.4550          | 0.0874 | 0.0642 | 0.0044        | 0.6625             | 1e-05  |
| 0.4716        | 46.0  | 10166 | 0.4546          | 0.0867 | 0.0632 | 0.0389        | 0.6642             | 1e-05  |
| 0.4716        | 47.0  | 10387 | 0.4545          | 0.0866 | 0.0630 | 0.0370        | 0.6651             | 1e-05  |
| 0.4722        | 48.0  | 10608 | 0.4546          | 0.0868 | 0.0634 | 0.0194        | 0.6645             | 1e-05  |
| 0.4722        | 49.0  | 10829 | 0.4544          | 0.0862 | 0.0627 | 0.0667        | 0.6667             | 0.0000 |
| 0.4717        | 50.0  | 11050 | 0.4545          | 0.0865 | 0.0631 | 0.0548        | 0.6651             | 0.0000 |
| 0.4717        | 51.0  | 11271 | 0.4545          | 0.0865 | 0.0629 | 0.0428        | 0.6651             | 0.0000 |
| 0.4717        | 52.0  | 11492 | 0.4542          | 0.0859 | 0.0623 | 0.1236        | 0.6672             | 0.0000 |
| 0.4718        | 53.0  | 11713 | 0.4542          | 0.0859 | 0.0625 | 0.0887        | 0.6672             | 0.0000 |
| 0.4718        | 54.0  | 11934 | 0.4543          | 0.0862 | 0.0624 | 0.0917        | 0.6653             | 0.0000 |
| 0.4716        | 55.0  | 12155 | 0.4546          | 0.0865 | 0.0631 | 0.0774        | 0.6650             | 0.0000 |
| 0.4716        | 56.0  | 12376 | 0.4546          | 0.0866 | 0.0633 | 0.0473        | 0.6649             | 0.0000 |
| 0.4717        | 57.0  | 12597 | 0.4549          | 0.0871 | 0.0639 | -0.0046       | 0.6658             | 0.0000 |
| 0.4717        | 58.0  | 12818 | 0.4544          | 0.0864 | 0.0627 | 0.0553        | 0.6656             | 0.0000 |
| 0.4716        | 59.0  | 13039 | 0.4545          | 0.0865 | 0.0631 | 0.0368        | 0.6654             | 0.0000 |
| 0.4716        | 60.0  | 13260 | 0.4544          | 0.0863 | 0.0629 | 0.0471        | 0.6660             | 0.0000 |
| 0.4716        | 61.0  | 13481 | 0.4542          | 0.0860 | 0.0624 | 0.0928        | 0.6670             | 0.0000 |
| 0.4718        | 62.0  | 13702 | 0.4545          | 0.0866 | 0.0632 | 0.0286        | 0.6661             | 0.0000 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1