File size: 18,159 Bytes
916c62f b5fb034 916c62f b5fb034 916c62f 26f1340 916c62f 26f1340 916c62f b5fb034 916c62f 26f1340 916c62f 26f1340 916c62f 26f1340 916c62f 26f1340 916c62f 26f1340 916c62f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
---
language:
- eng
license: apache-2.0
tags:
- multilabel-image-classification
- multilabel
- generated_from_trainer
metrics:
- accuracy
base_model: facebook/dinov2-large
model-index:
- name: DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DinoVdeau-large-2024_04_03-with_data_aug_batch-size32_epochs150_freeze
DinoVd'eau is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the multilabel_complete_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1181
- F1 Micro: 0.8219
- F1 Macro: 0.7131
- Roc Auc: 0.8797
- Accuracy: 0.3214
- Learning Rate: 0.0000
## Model description
DinoVd'eau is a model built on top of dinov2 model for underwater multilabel image classification.The classification head is a combination of linear, ReLU, batch normalization, and dropout layers.
- **Developed by:** [lombardata](https://huggingface.co/lombardata), credits to [César Leblanc](https://huggingface.co/CesarLeblanc)
## Intended uses & limitations
You can use the raw model for classify diverse marine species, encompassing coral morphotypes classes taken from the Global Coral Reef Monitoring Network (GCRMN), habitats classes and seagrass species.
## Training and evaluation data
Details on the number of images for each class are given in the following table:
| |train |val |test |Total |
|--- | --- | --- | --- | --- |
| Acropore_branched | 1504 | 445 | 430 | 2379 |
| Acropore_digitised | 593 | 151 | 144 | 888 |
| Acropore_sub_massive | 148 | 54 | 41 | 243 |
| Acropore_tabular | 1012 | 290 | 287 | 1589 |
| Algae_assembly | 2545 | 858 | 835 | 4238 |
| Algae_drawn_up | 376 | 123 | 121 | 620 |
| Algae_limestone | 1652 | 561 | 559 | 2772 |
| Algae_sodding | 3094 | 1011 | 1012 | 5117 |
| Atra/Leucospilota | 1081 | 352 | 359 | 1792 |
| Bleached_coral | 220 | 70 | 70 | 360 |
| Blurred | 192 | 62 | 66 | 320 |
| Dead_coral | 2001 | 637 | 626 | 3264 |
| Fish | 2068 | 611 | 642 | 3321 |
| Homo_sapiens | 162 | 60 | 60 | 282 |
| Human_object | 157 | 60 | 53 | 270 |
| Living_coral | 147 | 56 | 47 | 250 |
| Millepore | 378 | 131 | 128 | 637 |
| No_acropore_encrusting | 422 | 152 | 151 | 725 |
| No_acropore_foliaceous | 200 | 46 | 40 | 286 |
| No_acropore_massive | 1033 | 337 | 335 | 1705 |
| No_acropore_solitary | 193 | 56 | 54 | 303 |
| No_acropore_sub_massive | 1412 | 418 | 426 | 2256 |
| Rock | 4487 | 1481 | 1489 | 7457 |
| Sand | 5806 | 1959 | 1954 | 9719 |
| Scrap | 3063 | 1030 | 1030 | 5123 |
| Sea_cucumber | 1396 | 453 | 445 | 2294 |
| Sea_urchins | 319 | 122 | 104 | 545 |
| Sponge | 273 | 107 | 90 | 470 |
| Syringodium_isoetifolium | 1198 | 399 | 398 | 1995 |
| Thalassodendron_ciliatum | 781 | 260 | 262 | 1303 |
| Useless | 579 | 193 | 193 | 965 |
## Training procedure
### Data Augmentation
Data were augmented using the following transformations :
- training transformations : Sequential(
(0): PreProcess()
(1): Resize(output_size=(518, 518), p=1.0, p_batch=1.0, same_on_batch=True, size=(518, 518), side=short, resample=bilinear, align_corners=True, antialias=False)
(2): RandomHorizontalFlip(p=0.25, p_batch=1.0, same_on_batch=False)
(3): RandomVerticalFlip(p=0.25, p_batch=1.0, same_on_batch=False)
(4): ColorJiggle(brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.25, p_batch=1.0, same_on_batch=False)
(5): RandomPerspective(distortion_scale=0.5, p=0.25, p_batch=1.0, same_on_batch=False, align_corners=False, resample=bilinear)
(6): Normalize(p=1.0, p_batch=1.0, same_on_batch=True, mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
- validation transformations : Sequential(
(0): PreProcess()
(1): Resize(output_size=(518, 518), p=1.0, p_batch=1.0, same_on_batch=True, size=(518, 518), side=short, resample=bilinear, align_corners=True, antialias=False)
(2): Normalize(p=1.0, p_batch=1.0, same_on_batch=True, mean=tensor([0.4850, 0.4560, 0.4060]), std=tensor([0.2290, 0.2240, 0.2250]))
)
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: ReduceLROnPlateau with a patience of 5 epochs and a factor of 0.1
- freeze_encoder: True
- num_epochs: 150
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 Macro | F1 Micro | Validation Loss | Roc Auc | Rate |
|:-------------:|:-----:|:-----:|:--------:|:--------:|:--------:|:---------------:|:-------:|:------:|
| No log | 1.0 | 271 | 0.2207 | 0.4907 | 0.7369 | 0.1679 | 0.8188 | 0.001 |
| 0.2713 | 2.0 | 542 | 0.2515 | 0.5389 | 0.7614 | 0.1540 | 0.8356 | 0.001 |
| 0.2713 | 3.0 | 813 | 0.2526 | 0.6054 | 0.7728 | 0.1477 | 0.8472 | 0.001 |
| 0.1679 | 4.0 | 1084 | 0.2594 | 0.5848 | 0.7755 | 0.1578 | 0.8442 | 0.001 |
| 0.1679 | 5.0 | 1355 | 0.2618 | 0.6125 | 0.7819 | 0.1426 | 0.8555 | 0.001 |
| 0.1598 | 6.0 | 1626 | 0.2550 | 0.6239 | 0.7822 | 0.1422 | 0.8542 | 0.001 |
| 0.1598 | 7.0 | 1897 | 0.2557 | 0.6320 | 0.7825 | 0.1426 | 0.8534 | 0.001 |
| 0.1571 | 8.0 | 2168 | 0.2629 | 0.6223 | 0.7756 | 0.1528 | 0.8437 | 0.001 |
| 0.1571 | 9.0 | 2439 | 0.2481 | 0.6413 | 0.7796 | 0.1438 | 0.8549 | 0.001 |
| 0.1554 | 10.0 | 2710 | 0.2697 | 0.6289 | 0.7889 | 0.1405 | 0.8621 | 0.001 |
| 0.1554 | 11.0 | 2981 | 0.2684 | 0.6222 | 0.7898 | 0.1409 | 0.8614 | 0.001 |
| 0.1536 | 12.0 | 3252 | 0.2725 | 0.6166 | 0.7863 | 0.1392 | 0.8528 | 0.001 |
| 0.1526 | 13.0 | 3523 | 0.2625 | 0.6419 | 0.7877 | 0.1399 | 0.8559 | 0.001 |
| 0.1526 | 14.0 | 3794 | 0.2649 | 0.6326 | 0.7860 | 0.1438 | 0.8609 | 0.001 |
| 0.1535 | 15.0 | 4065 | 0.2735 | 0.6499 | 0.7930 | 0.1377 | 0.8625 | 0.001 |
| 0.1535 | 16.0 | 4336 | 0.2677 | 0.6435 | 0.7868 | 0.1397 | 0.8526 | 0.001 |
| 0.1517 | 17.0 | 4607 | 0.2646 | 0.6401 | 0.7928 | 0.1382 | 0.8634 | 0.001 |
| 0.1517 | 18.0 | 4878 | 0.2684 | 0.6286 | 0.7912 | 0.1392 | 0.8624 | 0.001 |
| 0.1524 | 19.0 | 5149 | 0.2636 | 0.6183 | 0.7874 | 0.1392 | 0.8576 | 0.001 |
| 0.1524 | 20.0 | 5420 | 0.2598 | 0.6286 | 0.7878 | 0.1386 | 0.8578 | 0.001 |
| 0.1527 | 21.0 | 5691 | 0.2601 | 0.6408 | 0.7880 | 0.1374 | 0.8557 | 0.001 |
| 0.1527 | 22.0 | 5962 | 0.2704 | 0.6476 | 0.7897 | 0.1377 | 0.8577 | 0.001 |
| 0.1513 | 23.0 | 6233 | 0.2697 | 0.6443 | 0.7955 | 0.1373 | 0.8655 | 0.001 |
| 0.1514 | 24.0 | 6504 | 0.2656 | 0.6477 | 0.7877 | 0.1593 | 0.8547 | 0.001 |
| 0.1514 | 25.0 | 6775 | 0.2656 | 0.6477 | 0.7909 | 0.1371 | 0.8619 | 0.001 |
| 0.1513 | 26.0 | 7046 | 0.2666 | 0.6273 | 0.7871 | 0.1374 | 0.8535 | 0.001 |
| 0.1513 | 27.0 | 7317 | 0.2646 | 0.6470 | 0.7934 | 0.1373 | 0.8595 | 0.001 |
| 0.1508 | 28.0 | 7588 | 0.2735 | 0.6523 | 0.7933 | 0.1353 | 0.8584 | 0.001 |
| 0.1508 | 29.0 | 7859 | 0.2776 | 0.6522 | 0.7960 | 0.1362 | 0.8645 | 0.001 |
| 0.1506 | 30.0 | 8130 | 0.2505 | 0.6283 | 0.7849 | 0.1384 | 0.8546 | 0.001 |
| 0.1506 | 31.0 | 8401 | 0.2718 | 0.6630 | 0.7964 | 0.1342 | 0.8636 | 0.001 |
| 0.151 | 32.0 | 8672 | 0.2718 | 0.6556 | 0.7968 | 0.1366 | 0.8696 | 0.001 |
| 0.151 | 33.0 | 8943 | 0.2824 | 0.6635 | 0.7985 | 0.1359 | 0.8701 | 0.001 |
| 0.1507 | 34.0 | 9214 | 0.2814 | 0.6400 | 0.7999 | 0.1335 | 0.8657 | 0.001 |
| 0.1507 | 35.0 | 9485 | 0.2725 | 0.6520 | 0.7963 | 0.1343 | 0.8653 | 0.001 |
| 0.1495 | 36.0 | 9756 | 0.2636 | 0.6451 | 0.7924 | 0.1429 | 0.8626 | 0.001 |
| 0.1496 | 37.0 | 10027 | 0.2732 | 0.6531 | 0.7981 | 0.1331 | 0.8638 | 0.001 |
| 0.1496 | 38.0 | 10298 | 0.2684 | 0.6306 | 0.7938 | 0.1350 | 0.8617 | 0.001 |
| 0.1503 | 39.0 | 10569 | 0.2800 | 0.6465 | 0.7984 | 0.1352 | 0.8661 | 0.001 |
| 0.1503 | 40.0 | 10840 | 0.2728 | 0.6271 | 0.7925 | 0.1347 | 0.8594 | 0.001 |
| 0.1505 | 41.0 | 11111 | 0.2721 | 0.6601 | 0.7935 | 0.1340 | 0.8579 | 0.001 |
| 0.1505 | 42.0 | 11382 | 0.2711 | 0.6636 | 0.7983 | 0.1322 | 0.8652 | 0.001 |
| 0.1491 | 43.0 | 11653 | 0.2735 | 0.6493 | 0.7949 | 0.1360 | 0.8635 | 0.001 |
| 0.1491 | 44.0 | 11924 | 0.2814 | 0.6400 | 0.7955 | 0.1361 | 0.8625 | 0.001 |
| 0.1507 | 45.0 | 12195 | 0.2814 | 0.6424 | 0.7971 | 0.1328 | 0.8640 | 0.001 |
| 0.1507 | 46.0 | 12466 | 0.2787 | 0.6469 | 0.7939 | 0.1328 | 0.8581 | 0.001 |
| 0.1495 | 47.0 | 12737 | 0.2752 | 0.6351 | 0.7977 | 0.1332 | 0.8672 | 0.001 |
| 0.1498 | 48.0 | 13008 | 0.2817 | 0.6490 | 0.8013 | 0.1325 | 0.8694 | 0.001 |
| 0.1498 | 49.0 | 13279 | 0.2883 | 0.6738 | 0.8062 | 0.1283 | 0.8710 | 0.0001 |
| 0.1416 | 50.0 | 13550 | 0.2872 | 0.6734 | 0.8087 | 0.1287 | 0.8747 | 0.0001 |
| 0.1416 | 51.0 | 13821 | 0.2900 | 0.6714 | 0.8067 | 0.1280 | 0.8706 | 0.0001 |
| 0.1387 | 52.0 | 14092 | 0.2900 | 0.6744 | 0.8067 | 0.1262 | 0.8702 | 0.0001 |
| 0.1387 | 53.0 | 14363 | 0.2910 | 0.6764 | 0.8094 | 0.1262 | 0.8729 | 0.0001 |
| 0.1356 | 54.0 | 14634 | 0.2948 | 0.6744 | 0.8091 | 0.1257 | 0.8702 | 0.0001 |
| 0.1356 | 55.0 | 14905 | 0.1257 | 0.8106 | 0.6814 | 0.8742 | 0.2948 | 0.0001 |
| 0.1348 | 56.0 | 15176 | 0.1260 | 0.8108 | 0.6772 | 0.8738 | 0.3010 | 0.0001 |
| 0.1348 | 57.0 | 15447 | 0.1250 | 0.8129 | 0.6806 | 0.8768 | 0.2986 | 0.0001 |
| 0.135 | 58.0 | 15718 | 0.1242 | 0.8142 | 0.6859 | 0.8762 | 0.3082 | 0.0001 |
| 0.135 | 59.0 | 15989 | 0.1245 | 0.8124 | 0.6870 | 0.8763 | 0.3027 | 0.0001 |
| 0.1334 | 60.0 | 16260 | 0.1242 | 0.8138 | 0.6854 | 0.8772 | 0.3030 | 0.0001 |
| 0.1335 | 61.0 | 16531 | 0.1240 | 0.8140 | 0.6889 | 0.8756 | 0.3065 | 0.0001 |
| 0.1335 | 62.0 | 16802 | 0.1249 | 0.8152 | 0.6809 | 0.8798 | 0.3016 | 0.0001 |
| 0.1308 | 63.0 | 17073 | 0.1233 | 0.8146 | 0.6848 | 0.8757 | 0.3068 | 0.0001 |
| 0.1308 | 64.0 | 17344 | 0.1234 | 0.8151 | 0.6908 | 0.8769 | 0.3058 | 0.0001 |
| 0.1326 | 65.0 | 17615 | 0.1233 | 0.8124 | 0.6812 | 0.8735 | 0.3034 | 0.0001 |
| 0.1326 | 66.0 | 17886 | 0.1232 | 0.8145 | 0.6878 | 0.8788 | 0.3027 | 0.0001 |
| 0.1306 | 67.0 | 18157 | 0.1228 | 0.8115 | 0.6857 | 0.8707 | 0.3075 | 0.0001 |
| 0.1306 | 68.0 | 18428 | 0.1226 | 0.8153 | 0.6913 | 0.8767 | 0.3075 | 0.0001 |
| 0.1299 | 69.0 | 18699 | 0.1227 | 0.8143 | 0.6764 | 0.8751 | 0.3085 | 0.0001 |
| 0.1299 | 70.0 | 18970 | 0.1230 | 0.8187 | 0.6999 | 0.8838 | 0.3106 | 0.0001 |
| 0.1295 | 71.0 | 19241 | 0.1225 | 0.8153 | 0.6893 | 0.8756 | 0.3068 | 0.0001 |
| 0.1289 | 72.0 | 19512 | 0.1223 | 0.8151 | 0.6868 | 0.8776 | 0.3037 | 0.0001 |
| 0.1289 | 73.0 | 19783 | 0.1223 | 0.8165 | 0.6918 | 0.8782 | 0.3054 | 0.0001 |
| 0.1279 | 74.0 | 20054 | 0.1225 | 0.8143 | 0.6856 | 0.8747 | 0.3054 | 0.0001 |
| 0.1279 | 75.0 | 20325 | 0.1221 | 0.8167 | 0.6878 | 0.8784 | 0.3102 | 0.0001 |
| 0.1276 | 76.0 | 20596 | 0.1217 | 0.8190 | 0.6964 | 0.8812 | 0.3167 | 0.0001 |
| 0.1276 | 77.0 | 20867 | 0.1217 | 0.8179 | 0.6940 | 0.8796 | 0.3102 | 0.0001 |
| 0.1274 | 78.0 | 21138 | 0.1216 | 0.8143 | 0.6859 | 0.8735 | 0.3082 | 0.0001 |
| 0.1274 | 79.0 | 21409 | 0.1215 | 0.8165 | 0.6945 | 0.8766 | 0.3147 | 0.0001 |
| 0.1269 | 80.0 | 21680 | 0.1214 | 0.8193 | 0.6999 | 0.8803 | 0.3147 | 0.0001 |
| 0.1269 | 81.0 | 21951 | 0.1214 | 0.8194 | 0.6974 | 0.8828 | 0.3113 | 0.0001 |
| 0.1259 | 82.0 | 22222 | 0.1212 | 0.8171 | 0.6956 | 0.8782 | 0.3102 | 0.0001 |
| 0.1259 | 83.0 | 22493 | 0.1208 | 0.8190 | 0.6970 | 0.8791 | 0.3123 | 0.0001 |
| 0.1258 | 84.0 | 22764 | 0.1209 | 0.8204 | 0.6997 | 0.8813 | 0.3154 | 0.0001 |
| 0.1251 | 85.0 | 23035 | 0.1211 | 0.8163 | 0.6935 | 0.8752 | 0.3065 | 0.0001 |
| 0.1251 | 86.0 | 23306 | 0.1203 | 0.8201 | 0.6972 | 0.8804 | 0.3154 | 0.0001 |
| 0.1251 | 87.0 | 23577 | 0.1208 | 0.8182 | 0.6947 | 0.8785 | 0.3150 | 0.0001 |
| 0.1251 | 88.0 | 23848 | 0.1214 | 0.8181 | 0.6937 | 0.8788 | 0.3154 | 0.0001 |
| 0.1246 | 89.0 | 24119 | 0.1206 | 0.8201 | 0.6953 | 0.8797 | 0.3106 | 0.0001 |
| 0.1246 | 90.0 | 24390 | 0.1210 | 0.8214 | 0.6960 | 0.8819 | 0.3164 | 0.0001 |
| 0.1239 | 91.0 | 24661 | 0.1199 | 0.8202 | 0.7006 | 0.8805 | 0.3154 | 0.0001 |
| 0.1239 | 92.0 | 24932 | 0.1208 | 0.8222 | 0.7039 | 0.8856 | 0.3161 | 0.0001 |
| 0.1238 | 93.0 | 25203 | 0.1204 | 0.8199 | 0.7004 | 0.8808 | 0.3133 | 0.0001 |
| 0.1238 | 94.0 | 25474 | 0.1200 | 0.8230 | 0.7036 | 0.8847 | 0.3143 | 0.0001 |
| 0.1237 | 95.0 | 25745 | 0.1206 | 0.8209 | 0.7069 | 0.8817 | 0.3188 | 0.0001 |
| 0.1234 | 96.0 | 26016 | 0.1201 | 0.8222 | 0.7060 | 0.8820 | 0.3147 | 0.0001 |
| 0.1234 | 97.0 | 26287 | 0.1204 | 0.8208 | 0.7074 | 0.8830 | 0.3092 | 0.0001 |
| 0.1215 | 98.0 | 26558 | 0.1200 | 0.8241 | 0.7125 | 0.8859 | 0.3188 | 1e-05 |
| 0.1215 | 99.0 | 26829 | 0.1195 | 0.8247 | 0.7127 | 0.8864 | 0.3171 | 1e-05 |
| 0.1208 | 100.0 | 27100 | 0.1192 | 0.8225 | 0.7077 | 0.8818 | 0.3164 | 1e-05 |
| 0.1208 | 101.0 | 27371 | 0.1193 | 0.8232 | 0.7060 | 0.8831 | 0.3171 | 1e-05 |
| 0.1195 | 102.0 | 27642 | 0.1197 | 0.8238 | 0.7105 | 0.8848 | 0.3185 | 1e-05 |
| 0.1195 | 103.0 | 27913 | 0.1191 | 0.8216 | 0.7076 | 0.8805 | 0.3140 | 1e-05 |
| 0.1197 | 104.0 | 28184 | 0.1193 | 0.8239 | 0.7063 | 0.8843 | 0.3202 | 1e-05 |
| 0.1197 | 105.0 | 28455 | 0.1190 | 0.8213 | 0.7071 | 0.8799 | 0.3126 | 1e-05 |
| 0.1189 | 106.0 | 28726 | 0.1190 | 0.8233 | 0.7061 | 0.8835 | 0.3202 | 1e-05 |
| 0.1189 | 107.0 | 28997 | 0.1194 | 0.8224 | 0.7038 | 0.8811 | 0.3164 | 1e-05 |
| 0.1194 | 108.0 | 29268 | 0.1191 | 0.8232 | 0.7110 | 0.8830 | 0.3191 | 1e-05 |
| 0.1187 | 109.0 | 29539 | 0.1189 | 0.8230 | 0.7101 | 0.8817 | 0.3174 | 1e-05 |
| 0.1187 | 110.0 | 29810 | 0.1192 | 0.8224 | 0.7044 | 0.8810 | 0.3161 | 1e-05 |
| 0.1185 | 111.0 | 30081 | 0.1192 | 0.8226 | 0.7083 | 0.8827 | 0.3174 | 1e-05 |
| 0.1185 | 112.0 | 30352 | 0.1190 | 0.8239 | 0.7093 | 0.8841 | 0.3205 | 1e-05 |
| 0.119 | 113.0 | 30623 | 0.1195 | 0.8233 | 0.7080 | 0.8845 | 0.3171 | 1e-05 |
| 0.119 | 114.0 | 30894 | 0.1190 | 0.8220 | 0.7062 | 0.8799 | 0.3181 | 1e-05 |
| 0.1182 | 115.0 | 31165 | 0.1192 | 0.8229 | 0.7081 | 0.8823 | 0.3174 | 1e-05 |
| 0.1182 | 116.0 | 31436 | 0.1190 | 0.8256 | 0.7128 | 0.8862 | 0.3250 | 0.0000 |
| 0.1191 | 117.0 | 31707 | 0.1187 | 0.8231 | 0.7104 | 0.8821 | 0.3171 | 0.0000 |
| 0.1191 | 118.0 | 31978 | 0.1189 | 0.8236 | 0.7061 | 0.8830 | 0.3198 | 0.0000 |
| 0.1179 | 119.0 | 32249 | 0.1189 | 0.8233 | 0.7080 | 0.8830 | 0.3181 | 0.0000 |
| 0.1176 | 120.0 | 32520 | 0.1190 | 0.8239 | 0.7101 | 0.8838 | 0.3185 | 0.0000 |
| 0.1176 | 121.0 | 32791 | 0.1195 | 0.8254 | 0.7128 | 0.8872 | 0.3209 | 0.0000 |
| 0.1175 | 122.0 | 33062 | 0.1192 | 0.8223 | 0.7048 | 0.8813 | 0.3154 | 0.0000 |
| 0.1175 | 123.0 | 33333 | 0.1192 | 0.8255 | 0.7154 | 0.8856 | 0.3212 | 0.0000 |
| 0.1176 | 124.0 | 33604 | 0.1189 | 0.8239 | 0.7109 | 0.8837 | 0.3209 | 0.0000 |
| 0.1176 | 125.0 | 33875 | 0.1189 | 0.8252 | 0.7102 | 0.8847 | 0.3226 | 0.0000 |
| 0.1179 | 126.0 | 34146 | 0.1189 | 0.8206 | 0.7025 | 0.8787 | 0.3164 | 0.0000 |
| 0.1179 | 127.0 | 34417 | 0.1190 | 0.8245 | 0.7104 | 0.8839 | 0.3216 | 0.0000 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0
|