File size: 2,214 Bytes
5ee22b6 ae17e88 5ee22b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: lnxdx/B4_1000_1e-5_hp-myself-2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: C2_1000_1e-5_hp-myself-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# C2_1000_1e-5_hp-myself-2
This model is a fine-tuned version of [lnxdx/B4_1000_1e-5_hp-myself-2](https://huggingface.co/lnxdx/B4_1000_1e-5_hp-myself-2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss on ShEMO train set: 0.7065
- Loss on ShEMO dev set: 0.6634
- WER on ShEMO train set: 26.52
- WER on ShEMO dev set: 30.87
- WER on Common Voice 13 test set: 19.43
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.7564 | 0.62 | 100 | 0.6705 | 0.3131 |
| 0.7761 | 1.25 | 200 | 0.6664 | 0.3140 |
| 0.7722 | 1.88 | 300 | 0.6573 | 0.3137 |
| 0.7035 | 2.5 | 400 | 0.6627 | 0.3157 |
| 0.7026 | 3.12 | 500 | 0.6834 | 0.3107 |
| 0.7213 | 3.75 | 600 | 0.6561 | 0.3169 |
| 0.6996 | 4.38 | 700 | 0.6664 | 0.3096 |
| 0.7146 | 5.0 | 800 | 0.6593 | 0.3148 |
| 0.7071 | 5.62 | 900 | 0.6646 | 0.3125 |
| 0.7065 | 6.25 | 1000 | 0.6634 | 0.3107 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|