File size: 2,211 Bytes
2841ffe 039fd96 2841ffe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
base_model: lnxdx/20_2000_1e-5_hp-mehrdad
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: B4_1000_1e-5_hp-myself-2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# B4_1000_1e-5_hp-myself-2
This model is a fine-tuned version of [lnxdx/20_2000_1e-5_hp-mehrdad](https://huggingface.co/lnxdx/20_2000_1e-5_hp-mehrdad) on the None dataset.
It achieves the following results on the evaluation set:
- Loss on ShEMO train set: 0.7516
- Loss on ShEMO dev set: 0.6705
- WER on ShEMO train set: 28.02
- WER on ShEMO dev set: 31.16
- WER on Common Voice 13 test set: 19.34
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8083 | 0.62 | 100 | 0.6766 | 0.3271 |
| 0.8414 | 1.25 | 200 | 0.6774 | 0.3259 |
| 0.8465 | 1.88 | 300 | 0.6686 | 0.3262 |
| 0.7819 | 2.5 | 400 | 0.6749 | 0.3207 |
| 0.7905 | 3.12 | 500 | 0.6848 | 0.3178 |
| 0.8078 | 3.75 | 600 | 0.6571 | 0.3245 |
| 0.7771 | 4.38 | 700 | 0.6683 | 0.3145 |
| 0.7786 | 5.0 | 800 | 0.6688 | 0.3137 |
| 0.7656 | 5.62 | 900 | 0.6703 | 0.3134 |
| 0.7516 | 6.25 | 1000 | 0.6706 | 0.3131 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|