asahi417's picture
model update
7a04dc1
|
raw
history blame
7.09 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: en
datasets:
  - lmqg/qag_tweetqa
pipeline_tag: text2text-generation
tags:
  - questions and answers generation
widget:
  - text: >-
      generate question and answer: Beyonce further expanded her acting career,
      starring as blues singer Etta James in the 2008 musical biopic, Cadillac
      Records.
    example_title: Questions & Answers Generation Example 1
model-index:
  - name: lmqg/t5-large-tweetqa-qag
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qag_tweetqa
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question & Answer Generation)
            type: bleu4_question_answer_generation
            value: 13.76
          - name: ROUGE-L (Question & Answer Generation)
            type: rouge_l_question_answer_generation
            value: 37.24
          - name: METEOR (Question & Answer Generation)
            type: meteor_question_answer_generation
            value: 31.61
          - name: BERTScore (Question & Answer Generation)
            type: bertscore_question_answer_generation
            value: 91.09
          - name: MoverScore (Question & Answer Generation)
            type: moverscore_question_answer_generation
            value: 62.77
          - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
            type: qa_aligned_f1_score_bertscore_question_answer_generation
            value: 92.5
          - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
            type: qa_aligned_recall_bertscore_question_answer_generation
            value: 92.29
          - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
            type: qa_aligned_precision_bertscore_question_answer_generation
            value: 92.72
          - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
            type: qa_aligned_f1_score_moverscore_question_answer_generation
            value: 65.05
          - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
            type: qa_aligned_recall_moverscore_question_answer_generation
            value: 64.59
          - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
            type: qa_aligned_precision_moverscore_question_answer_generation
            value: 65.58

Model Card of lmqg/t5-large-tweetqa-qag

This model is fine-tuned version of t5-large for question & answer pair generation task on the lmqg/qag_tweetqa (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="en", model="lmqg/t5-large-tweetqa-qag")

# model prediction
question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/t5-large-tweetqa-qag")
output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")

Evaluation

Score Type Dataset
BERTScore 91.09 default lmqg/qag_tweetqa
Bleu_1 41.33 default lmqg/qag_tweetqa
Bleu_2 28.37 default lmqg/qag_tweetqa
Bleu_3 19.68 default lmqg/qag_tweetqa
Bleu_4 13.76 default lmqg/qag_tweetqa
METEOR 31.61 default lmqg/qag_tweetqa
MoverScore 62.77 default lmqg/qag_tweetqa
QAAlignedF1Score (BERTScore) 92.5 default lmqg/qag_tweetqa
QAAlignedF1Score (MoverScore) 65.05 default lmqg/qag_tweetqa
QAAlignedPrecision (BERTScore) 92.72 default lmqg/qag_tweetqa
QAAlignedPrecision (MoverScore) 65.58 default lmqg/qag_tweetqa
QAAlignedRecall (BERTScore) 92.29 default lmqg/qag_tweetqa
QAAlignedRecall (MoverScore) 64.59 default lmqg/qag_tweetqa
ROUGE_L 37.24 default lmqg/qag_tweetqa

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qag_tweetqa
  • dataset_name: default
  • input_types: ['paragraph']
  • output_types: ['questions_answers']
  • prefix_types: ['qag']
  • model: t5-large
  • max_length: 256
  • max_length_output: 128
  • epoch: 16
  • batch: 16
  • lr: 0.0001
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 4
  • label_smoothing: 0.0

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}