mt5-small-itquad-qg / README.md
asahi417's picture
model update
f49786e
|
raw
history blame
3.38 kB
---
license: cc-by-4.0
metrics:
- bleu4
- meteor
- rouge-l
- bertscore
- moverscore
language: it
datasets:
- lmqg/qg_itquad
pipeline_tag: text2text-generation
tags:
- question generation
widget:
- text: "<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento."
example_title: "Question Generation Example 1"
- text: "L' individuazione del petrolio e lo sviluppo di nuovi giacimenti richiedeva in genere <hl> da cinque a dieci anni <hl> prima di una produzione significativa."
example_title: "Question Generation Example 2"
- text: "il <hl> Giappone <hl> è stato il paese più dipendente dal petrolio arabo."
example_title: "Question Generation Example 3"
model-index:
- name: lmqg/mt5-small-itquad
results:
- task:
name: Text2text Generation
type: text2text-generation
dataset:
name: lmqg/qg_itquad
type: default
args: default
metrics:
- name: BLEU4
type: bleu4
value: 0.07374845292566005
- name: ROUGE-L
type: rouge-l
value: 0.2192586325405669
- name: METEOR
type: meteor
value: 0.17566508622690377
- name: BERTScore
type: bertscore
value: 0.8079826348452711
- name: MoverScore
type: moverscore
value: 0.5678645897809871
---
# Language Models Fine-tuning on Question Generation: `lmqg/mt5-small-itquad`
This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the
[lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (dataset_name: default).
### Overview
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
- **Language:** it
- **Training data:** [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) (default)
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [TBA](TBA)
### Usage
```python
from transformers import pipeline
model_path = 'lmqg/mt5-small-itquad'
pipe = pipeline("text2text-generation", model_path)
# Question Generation
question = pipe('<hl> Dopo il 1971 <hl> , l' OPEC ha tardato ad adeguare i prezzi per riflettere tale deprezzamento.')
```
## Evaluation Metrics
### Metrics
| Dataset | Type | BLEU4 | ROUGE-L | METEOR | BERTScore | MoverScore | Link |
|:--------|:-----|------:|--------:|-------:|----------:|-----------:|-----:|
| [lmqg/qg_itquad](https://huggingface.co/datasets/lmqg/qg_itquad) | default | 0.074 | 0.219 | 0.176 | 0.808 | 0.568 | [link](https://huggingface.co/lmqg/mt5-small-itquad/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_itquad.default.json) |
## Training hyperparameters
The following hyperparameters were used during fine-tuning:
- dataset_path: lmqg/qg_itquad
- dataset_name: default
- input_types: ['paragraph_answer']
- output_types: ['question']
- prefix_types: None
- model: google/mt5-small
- max_length: 512
- max_length_output: 32
- epoch: 15
- batch: 16
- lr: 0.0005
- fp16: False
- random_seed: 1
- gradient_accumulation_steps: 4
- label_smoothing: 0.0
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-itquad/raw/main/trainer_config.json).
## Citation
TBA