File size: 2,868 Bytes
8684f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- bleu
- rouge
model-index:
- name: t5-small-codesearchnet-multilang-python-java-javascript-go
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-codesearchnet-multilang-python-java-javascript-go

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5955
- Bleu: 0.009
- Rouge1: 0.2321
- Rouge2: 0.0831
- Avg Length: 16.6192

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 10
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Bleu   | Rouge1 | Rouge2 | Avg Length |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:----------:|
| No log        | 1.0   | 375  | 0.7349          | 0.0028 | 0.1562 | 0.0364 | 16.436     |
| 2.3117        | 2.0   | 750  | 0.6613          | 0.0066 | 0.1818 | 0.0531 | 16.824     |
| 0.6755        | 3.0   | 1125 | 0.6233          | 0.007  | 0.1957 | 0.0594 | 16.931     |
| 0.5998        | 4.0   | 1500 | 0.6023          | 0.0082 | 0.202  | 0.063  | 16.7154    |
| 0.5998        | 5.0   | 1875 | 0.5925          | 0.0096 | 0.2154 | 0.0703 | 16.5468    |
| 0.5511        | 6.0   | 2250 | 0.5728          | 0.0091 | 0.2213 | 0.0774 | 15.7216    |
| 0.5147        | 7.0   | 2625 | 0.5670          | 0.0111 | 0.2311 | 0.0815 | 16.6658    |
| 0.4861        | 8.0   | 3000 | 0.5628          | 0.0089 | 0.2217 | 0.077  | 17.038     |
| 0.4861        | 9.0   | 3375 | 0.5598          | 0.0103 | 0.2311 | 0.0825 | 16.362     |
| 0.4526        | 10.0  | 3750 | 0.5589          | 0.0083 | 0.232  | 0.086  | 15.4298    |
| 0.4329        | 11.0  | 4125 | 0.5649          | 0.0098 | 0.2349 | 0.0839 | 16.5468    |
| 0.4102        | 12.0  | 4500 | 0.5633          | 0.0098 | 0.2366 | 0.0867 | 16.4136    |
| 0.4102        | 13.0  | 4875 | 0.5841          | 0.01   | 0.2385 | 0.0869 | 15.9864    |
| 0.3841        | 14.0  | 5250 | 0.5777          | 0.0128 | 0.2437 | 0.0894 | 16.842     |
| 0.3673        | 15.0  | 5625 | 0.5955          | 0.009  | 0.2321 | 0.0831 | 16.6192    |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3