File size: 2,513 Bytes
480f413 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-kinetics-finetuned-rwf2000mp4-epochs8-batch8-kb
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-kinetics-finetuned-rwf2000mp4-epochs8-batch8-kb
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8559
- Accuracy: 0.7453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 3200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.3514 | 0.06 | 200 | 0.2837 | 0.8875 |
| 0.3156 | 1.06 | 400 | 0.6930 | 0.7625 |
| 0.2273 | 2.06 | 600 | 0.5692 | 0.805 |
| 0.2091 | 3.06 | 800 | 0.3872 | 0.8612 |
| 0.1875 | 4.06 | 1000 | 0.3394 | 0.8725 |
| 0.1206 | 5.06 | 1200 | 0.4416 | 0.8562 |
| 0.1302 | 6.06 | 1400 | 1.0851 | 0.7475 |
| 0.3417 | 7.06 | 1600 | 0.5024 | 0.8638 |
| 0.2545 | 8.06 | 1800 | 0.3819 | 0.9 |
| 0.1787 | 9.06 | 2000 | 0.3864 | 0.8962 |
| 0.0761 | 10.06 | 2200 | 0.5604 | 0.8562 |
| 0.076 | 11.06 | 2400 | 0.5780 | 0.8725 |
| 0.1476 | 12.06 | 2600 | 0.5479 | 0.8725 |
| 0.1274 | 13.06 | 2800 | 0.5843 | 0.87 |
| 0.0382 | 14.06 | 3000 | 0.6739 | 0.8525 |
| 0.0143 | 15.06 | 3200 | 0.5568 | 0.8738 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.1+cu117
- Datasets 2.8.0
- Tokenizers 0.13.2
|