File size: 1,691 Bytes
5ef7c6a
 
 
bb0a108
4ad0393
bb0a108
 
 
 
4ad0393
bb0a108
4ad0393
bb0a108
0b98cb0
bb0a108
0b98cb0
d38689e
6ab43b7
bb0a108
0b98cb0
bb0a108
0b98cb0
 
 
d38689e
0b98cb0
bb0a108
0b98cb0
d38689e
bb0a108
 
0b98cb0
bb0a108
0b98cb0
bb0a108
0b98cb0
d38689e
 
bb0a108
 
d38689e
bb0a108
 
 
 
0b98cb0
bb0a108
0b98cb0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
license: apache-2.0
---

# SLIM-NLI-TOOL

<!-- Provide a quick summary of what the model is/does. -->


**slim-nli-tool** is a 4_K_M quantized GGUF version of slim-nli, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.  

[**slim-nli**](https://huggingface.co/llmware/slim-nli) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.

To pull the model via API:  

    from huggingface_hub import snapshot_download           
    snapshot_download("llmware/slim-nli-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)  
    

Load in your favorite GGUF inference engine, or try with llmware as follows:

    from llmware.models import ModelCatalog  
    
    # to load the model and make a basic inference
    model = ModelCatalog().load_model("slim-nli-tool")
    response = model.function_call(text_sample)  

    # this one line will download the model and run a series of tests
    ModelCatalog().tool_test_run("slim-nli-tool", verbose=True)  


Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:

    from llmware.agents import LLMfx

    llm_fx = LLMfx()
    llm_fx.load_tool("nli")
    response = llm_fx.nli(text)  


Note: please review [**config.json**](https://huggingface.co/llmware/slim-nli-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.  


## Model Card Contact

Darren Oberst & llmware team  

[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)