File size: 1,691 Bytes
5ef7c6a bb0a108 4ad0393 bb0a108 4ad0393 bb0a108 4ad0393 bb0a108 0b98cb0 bb0a108 0b98cb0 d38689e 6ab43b7 bb0a108 0b98cb0 bb0a108 0b98cb0 d38689e 0b98cb0 bb0a108 0b98cb0 d38689e bb0a108 0b98cb0 bb0a108 0b98cb0 bb0a108 0b98cb0 d38689e bb0a108 d38689e bb0a108 0b98cb0 bb0a108 0b98cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
license: apache-2.0
---
# SLIM-NLI-TOOL
<!-- Provide a quick summary of what the model is/does. -->
**slim-nli-tool** is a 4_K_M quantized GGUF version of slim-nli, providing a small, fast inference implementation, optimized for multi-model concurrent deployment.
[**slim-nli**](https://huggingface.co/llmware/slim-nli) is part of the SLIM ("**S**tructured **L**anguage **I**nstruction **M**odel") series, providing a set of small, specialized decoder-based LLMs, fine-tuned for function-calling.
To pull the model via API:
from huggingface_hub import snapshot_download
snapshot_download("llmware/slim-nli-tool", local_dir="/path/on/your/machine/", local_dir_use_symlinks=False)
Load in your favorite GGUF inference engine, or try with llmware as follows:
from llmware.models import ModelCatalog
# to load the model and make a basic inference
model = ModelCatalog().load_model("slim-nli-tool")
response = model.function_call(text_sample)
# this one line will download the model and run a series of tests
ModelCatalog().tool_test_run("slim-nli-tool", verbose=True)
Slim models can also be loaded even more simply as part of a multi-model, multi-step LLMfx calls:
from llmware.agents import LLMfx
llm_fx = LLMfx()
llm_fx.load_tool("nli")
response = llm_fx.nli(text)
Note: please review [**config.json**](https://huggingface.co/llmware/slim-nli-tool/blob/main/config.json) in the repository for prompt wrapping information, details on the model, and full test set.
## Model Card Contact
Darren Oberst & llmware team
[Any questions? Join us on Discord](https://discord.gg/MhZn5Nc39h)
|