File size: 20,329 Bytes
e47221b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
from __future__ import annotations

import re
import logging
import json
import os
from pathlib import Path
from typing import Any, Callable, Sequence, Mapping, Iterable, Protocol, ClassVar, runtime_checkable

from sentencepiece import SentencePieceProcessor

import gguf

from .gguf_writer import GGUFWriter

logger = logging.getLogger(__name__)


class SpecialVocab:
    merges: list[str]
    add_special_token: dict[str, bool]
    special_token_ids: dict[str, int]
    chat_template: str | Sequence[Mapping[str, str]] | None

    def __init__(
        self, path: str | os.PathLike[str], load_merges: bool = False,
        special_token_types: Iterable[str] | None = None,
        n_vocab: int | None = None,
    ):
        self.special_token_ids = {}
        self.add_special_token = {}
        self.n_vocab = n_vocab
        self.load_merges = load_merges
        self.merges = []
        self.chat_template = None
        if special_token_types is not None:
            self.special_token_types = special_token_types
        else:
            self.special_token_types = ('bos', 'eos', 'unk', 'sep', 'pad', 'cls', 'mask')
        self._load(Path(path))

    def __repr__(self) -> str:
        return '<SpecialVocab with {} merges, special tokens {}, add special tokens {}>'.format(
            len(self.merges), self.special_token_ids or "unset", self.add_special_token or "unset",
        )

    def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
        if self.merges:
            if not quiet:
                logger.info(f'Adding {len(self.merges)} merge(s).')
            gw.add_token_merges(self.merges)
        elif self.load_merges:
            logger.warning('Adding merges requested but no merges found, output may be non-functional.')
        for typ, tokid in self.special_token_ids.items():
            id_handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
            if id_handler is None:
                logger.warning(f'No handler for special token type {typ} with id {tokid} - skipping')
                continue
            if not quiet:
                logger.info(f'Setting special token type {typ} to {tokid}')
            id_handler(tokid)
        for typ, value in self.add_special_token.items():
            add_handler: Callable[[bool], None] | None = getattr(gw, f'add_add_{typ}_token', None)
            if add_handler is None:
                logger.warning(f'No handler for add_{typ}_token with value {value} - skipping')
                continue
            if not quiet:
                logger.info(f'Setting add_{typ}_token to {value}')
            add_handler(value)
        if self.chat_template is not None:
            if not quiet:
                logger.info(f'Setting chat_template to {self.chat_template}')
            gw.add_chat_template(self.chat_template)

    def _load(self, path: Path) -> None:
        self._try_load_from_tokenizer_json(path)
        self._try_load_from_config_json(path)
        if self.load_merges and not self.merges:
            self._try_load_merges_txt(path)

    def _try_load_merges_txt(self, path: Path) -> bool:
        merges_file = path / 'merges.txt'
        if not merges_file.is_file():
            return False
        with open(merges_file, 'r', encoding = 'utf-8') as fp:
            first_line = next(fp, '').strip()
            if not first_line.startswith('#'):
                fp.seek(0)
                line_num = 0
            else:
                line_num = 1
            merges = []
            for line in fp:
                line_num += 1
                line = line.strip()
                if not line:
                    continue
                parts = line.split(None, 3)
                if len(parts) != 2:
                    logger.warning(f'{merges_file.name}: Line {line_num}: Entry malformed, ignoring')
                    continue
                merges.append(f'{parts[0]} {parts[1]}')
        self.merges = merges
        return True

    def _set_special_token(self, typ: str, tid: Any) -> None:
        if not isinstance(tid, int):
            return
        if tid < 0:
            raise ValueError(f'invalid value for special token type {typ}: {tid}')
        if self.n_vocab is None or tid < self.n_vocab:
            if typ in self.special_token_ids:
                return
            self.special_token_ids[typ] = tid
            return
        logger.warning(f'Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping')

    def _try_load_from_tokenizer_json(self, path: Path) -> bool:
        tokenizer_file = path / 'tokenizer.json'
        if tokenizer_file.is_file():
            with open(tokenizer_file, encoding = 'utf-8') as f:
                tokenizer = json.load(f)
            if self.load_merges:
                merges = tokenizer.get('model', {}).get('merges')
                if isinstance(merges, list) and merges:
                    if isinstance(merges[0], str):
                        self.merges = merges
                    elif isinstance(merges[0], list) and len(merges[0]) == 2 and isinstance(merges[0][0], str):
                        # New format since transformers 4.45 to support spaces in merges
                        # ref: https://github.com/ggerganov/llama.cpp/issues/9692
                        # TODO: internally store as the new format instead of converting to old
                        if any(' ' in s for pair in merges for s in pair):
                            logger.warning(f'Spaces in merges detected, encoding as {chr(ord(" ") + 256)!r}')
                        self.merges = [
                            ' '.join(
                                [
                                    # ensure the spaces are properly encoded
                                    ''.join(
                                        chr(ord(c) + 256) if c == ' ' else c
                                        for c in part
                                    )
                                    for part in pair
                                ]
                            )
                            for pair in merges
                        ]
                    else:
                        raise ValueError("Unknown tokenizer merges format")
            added_tokens = tokenizer.get('added_tokens', {})
        else:
            added_tokens = {}
        tokenizer_config_file = path / 'tokenizer_config.json'
        if not tokenizer_config_file.is_file():
            return True
        with open(tokenizer_config_file, encoding = 'utf-8') as f:
            tokenizer_config = json.load(f)
        chat_template = tokenizer_config.get('chat_template')
        if chat_template is None or isinstance(chat_template, (str, list)):
            self.chat_template = chat_template
        else:
            logger.warning(f'Bad type for chat_template field in {tokenizer_config_file!r} - ignoring')
        for typ in self.special_token_types:
            add_entry = tokenizer_config.get(f'add_{typ}_token')
            if isinstance(add_entry, bool):
                self.add_special_token[typ] = add_entry
            entry = tokenizer_config.get(f'{typ}_token')
            if isinstance(entry, str):
                tc_content = entry
            elif isinstance(entry, dict):
                entry_content = entry.get('content')
                if not isinstance(entry_content, str):
                    continue
                tc_content = entry_content
            else:
                continue
            # We only need the first match here.
            maybe_token_id = next(
                (atok.get('id') for atok in added_tokens if atok.get('content') == tc_content),
                None,
            )
            self._set_special_token(typ, maybe_token_id)
        return True

    def _try_load_from_config_json(self, path: Path) -> bool:
        config_file = path / 'config.json'
        if not config_file.is_file():
            return False
        with open(config_file, encoding = 'utf-8') as f:
            config = json.load(f)
        for typ in self.special_token_types:
            self._set_special_token(typ, config.get(f'{typ}_token_id'))
        return True


@runtime_checkable
class BaseVocab(Protocol):
    tokenizer_model: ClassVar[str]
    name: ClassVar[str]


@runtime_checkable
class Vocab(BaseVocab, Protocol):
    vocab_size: int
    added_tokens_dict: dict[str, int]
    added_tokens_list: list[str]
    fname_tokenizer: Path

    def __init__(self, base_path: Path): ...
    def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...


class NoVocab(BaseVocab):
    tokenizer_model = "no_vocab"
    name = "no_vocab"

    def __repr__(self) -> str:
        return "<NoVocab for a model without integrated vocabulary>"


class BpeVocab(Vocab):
    tokenizer_model = "gpt2"
    name = "bpe"

    def __init__(self, base_path: Path):
        added_tokens: dict[str, int] = {}

        if (fname_tokenizer := base_path / 'vocab.json').exists():
            # "slow" tokenizer
            with open(fname_tokenizer, encoding="utf-8") as f:
                self.vocab = json.load(f)

            try:
                # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
                with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
                    added_tokens = json.load(f)
            except FileNotFoundError:
                pass
        else:
            # "fast" tokenizer
            fname_tokenizer = base_path / 'tokenizer.json'

            # if this fails, FileNotFoundError propagates to caller
            with open(fname_tokenizer, encoding="utf-8") as f:
                tokenizer_json = json.load(f)

            tokenizer_model: dict[str, Any] = tokenizer_json['model']
            if (
                tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
                or tokenizer_json['decoder']['type'] != 'ByteLevel'
            ):
                raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')

            self.vocab = tokenizer_model["vocab"]

            if (added := tokenizer_json.get('added_tokens')) is not None:
                # Added tokens here can be duplicates of the main vocabulary.
                added_tokens = {item['content']: item['id']
                                for item in added
                                if item['content'] not in self.vocab}

        vocab_size   = len(self.vocab)
        expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
        actual_ids   = sorted(added_tokens.values())
        if expected_ids != actual_ids:
            expected_end_id = vocab_size + len(actual_ids) - 1
            raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
                             f"{vocab_size} - {expected_end_id}; got {actual_ids}")

        items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
        self.added_tokens_dict    = added_tokens
        self.added_tokens_list    = [text for (text, idx) in items]
        self.vocab_size_base      = vocab_size
        self.vocab_size           = self.vocab_size_base + len(self.added_tokens_list)
        self.fname_tokenizer      = fname_tokenizer

    def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}

        for i, _ in enumerate(self.vocab):
            yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL

    def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        for text in self.added_tokens_list:
            score = -1000.0
            yield text.encode("utf-8"), score, gguf.TokenType.CONTROL

    def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        yield from self.bpe_tokens()
        yield from self.added_tokens()

    def __repr__(self) -> str:
        return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"


class SentencePieceVocab(Vocab):
    tokenizer_model = "llama"
    name = "spm"

    def __init__(self, base_path: Path):
        added_tokens: dict[str, int] = {}
        if (fname_tokenizer := base_path / 'tokenizer.model').exists():
            # normal location
            try:
                with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
                    added_tokens = json.load(f)
            except FileNotFoundError:
                pass
        elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
            # not found in alternate location either
            raise FileNotFoundError('Cannot find tokenizer.model')

        self.sentencepiece_tokenizer = SentencePieceProcessor()
        self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
        vocab_size = self.sentencepiece_tokenizer.vocab_size()

        new_tokens       = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
        expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
        actual_new_ids   = sorted(new_tokens.keys())

        if expected_new_ids != actual_new_ids:
            raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")

        # Token pieces that were added to the base vocabulary.
        self.added_tokens_dict  = added_tokens
        self.added_tokens_list  = [new_tokens[id] for id in actual_new_ids]
        self.vocab_size_base    = vocab_size
        self.vocab_size         = self.vocab_size_base + len(self.added_tokens_list)
        self.fname_tokenizer    = fname_tokenizer

    def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        tokenizer = self.sentencepiece_tokenizer
        for i in range(tokenizer.vocab_size()):
            piece = tokenizer.IdToPiece(i)
            text         = piece.encode("utf-8")
            score: float = tokenizer.GetScore(i)

            toktype = gguf.TokenType.NORMAL
            if tokenizer.IsUnknown(i):
                toktype = gguf.TokenType.UNKNOWN
            if tokenizer.IsControl(i):
                toktype = gguf.TokenType.CONTROL

            # NOTE: I think added_tokens are user defined.
            # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
            # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED

            if tokenizer.IsUnused(i):
                toktype = gguf.TokenType.UNUSED
            if tokenizer.IsByte(i):
                toktype = gguf.TokenType.BYTE

            yield text, score, toktype

    def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        for text in self.added_tokens_list:
            score = -1000.0
            yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED

    def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        yield from self.sentencepiece_tokens()
        yield from self.added_tokens()

    def __repr__(self) -> str:
        return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"


class LlamaHfVocab(Vocab):
    tokenizer_model = "llama"
    name = "hfft"

    def __init__(self, base_path: Path):
        fname_tokenizer = base_path / 'tokenizer.json'
        # if this fails, FileNotFoundError propagates to caller
        with open(fname_tokenizer, encoding='utf-8') as f:
            tokenizer_json = json.load(f)

        # pre-check so we know if we need transformers
        tokenizer_model: dict[str, Any] = tokenizer_json['model']
        is_llama3 = (
            tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
            and not tokenizer_model.get('byte_fallback', True)
        )
        if is_llama3:
            raise TypeError('Llama 3 must be converted with BpeVocab')

        if not is_llama3 and (
            tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
            or tokenizer_json['decoder']['type'] != 'Sequence'
        ):
            raise FileNotFoundError('Cannot find Llama BPE tokenizer')

        try:
            from transformers import AutoTokenizer
        except ImportError as e:
            raise ImportError(
                "To use LlamaHfVocab, please install the `transformers` package. "
                "You can install it with `pip install transformers`."
            ) from e

        # Allow the tokenizer to default to slow or fast versions.
        # Explicitly set tokenizer to use local paths.
        self.tokenizer = AutoTokenizer.from_pretrained(
            base_path,
            cache_dir=base_path,
            local_files_only=True,
        )
        assert self.tokenizer.is_fast  # assume tokenizer.json is used

        # Initialize lists and dictionaries for added tokens
        self.added_tokens_list = []
        self.added_tokens_dict = dict()
        self.added_tokens_ids  = set()

        # Process added tokens
        for tok, tokidx in sorted(
            self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
        ):
            # Only consider added tokens that are not in the base vocabulary
            if tokidx >= self.tokenizer.vocab_size:
                self.added_tokens_list.append(tok)
                self.added_tokens_dict[tok] = tokidx
                self.added_tokens_ids.add(tokidx)

        # Store special tokens and their IDs
        self.specials = {
            tok: self.tokenizer.get_vocab()[tok]
            for tok in self.tokenizer.all_special_tokens
        }
        self.special_ids = set(self.tokenizer.all_special_ids)

        # Set vocabulary sizes
        self.vocab_size_base = self.tokenizer.vocab_size
        self.vocab_size      = self.vocab_size_base + len(self.added_tokens_list)

        self.fname_tokenizer = fname_tokenizer

    def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        reverse_vocab = {
            id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
        }

        for token_id in range(self.vocab_size_base):
            # Skip processing added tokens here
            if token_id in self.added_tokens_ids:
                continue

            # Convert token text to bytes
            token_text = reverse_vocab[token_id].encode("utf-8")

            # Yield token text, score, and type
            yield token_text, self.get_token_score(token_id), self.get_token_type(
                token_id, token_text, self.special_ids  # Reuse already stored special IDs
            )

    def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
        # Special case for byte tokens
        if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
            return gguf.TokenType.BYTE

        # Determine token type based on whether it's a special token
        return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL

    def get_token_score(self, token_id: int) -> float:
        # Placeholder for actual logic to determine the token's score
        # This needs to be implemented based on specific requirements
        return -1000.0  # Default score

    def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        for text in self.added_tokens_list:
            if text in self.specials:
                toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
                score = self.get_token_score(self.specials[text])
            else:
                toktype = gguf.TokenType.USER_DEFINED
                score = -1000.0

            yield text.encode("utf-8"), score, toktype

    def has_newline_token(self):
        return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab

    def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
        yield from self.hf_tokens()
        yield from self.added_tokens()

    def __repr__(self) -> str:
        return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"