File size: 9,173 Bytes
bfae628
 
 
9ad41e9
bfae628
 
 
 
07f3bcb
bfae628
 
57b4cf3
 
 
07f3bcb
bfae628
 
 
 
 
bcef42b
 
bfae628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc04de
2c9ba3b
bfae628
 
 
 
 
 
 
 
 
bcef42b
 
bfae628
 
bcef42b
bfae628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc380d6
bfae628
 
bc380d6
bfae628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bc04de
bfae628
 
 
 
 
 
 
 
 
 
 
 
bc380d6
bfae628
 
 
 
 
 
 
 
 
 
 
 
bc380d6
bfae628
 
 
 
 
 
 
07f3bcb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfae628
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
---
language:
- en
- zh
license: apache-2.0
tags:
- vision
- image-text-to-text
- transformers.js
datasets:
- lmms-lab/LLaVA-OneVision-Data
pipeline_tag: image-text-to-text
inference: false
arxiv: 2408.03326
library_name: transformers
---
# LLaVA-Onevision Model Card

![image/png](llava_onevision_arch.png)

Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-4AtYjR8UMtCALV0AswU1kiNkWCLTALT?usp=sharing)

Below is the model card of 0.5B LLaVA-Onevision model which is copied from the original LLaVA-Onevision model card that you can find [here](https://huggingface.co/lmms-lab/llava-onevision-qwen2-0.5b-si).



## Model details

**Model type:**
LLaVA-Onevision is an open-source multimodal LLM trained by fine-tuning Qwen2 on GPT-generated multimodal instruction-following data.
LLaVA-OneVision is the first single model that can simultaneously push the performance boundaries of open LMMs in three important computer
vision scenarios: single-image, multi-image, and video scenarios. Importantly, the design of LLaVA-OneVision allows strong transfer learning
across different modalities/scenarios, yielding new emerging capabilities. In particular, strong video understanding and cross-scenario
capabilities are demonstrated through task transfer from images to videos.

**Model date:**
LLaVA-Onevision-0.5-ov was added in August 2024.

**Paper or resources for more information:**
https://llava-vl.github.io/

- **Architecture:** SO400M + Qwen2
- **Pretraining Stage:** LCS-558K, 1 epoch, projector
- **Mid Stage:** A mixture of 4.7M high-quality synthetic data, 1 epoch, full model
- **Final-Image Stage:** A mixture of 3.6M single-image data, 1 epoch, full model
- **OneVision Stage:** A mixture of 1.6M single-image/multi-image/video data, 1 epoch, full model
- **Precision:** bfloat16


## How to use the model

First, make sure to have `transformers` installed from [branch](https://github.com/huggingface/transformers/pull/32673) or `transformers >= 4.45.0`. 
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template by applying chat template:

### Using `pipeline`:

Below we used [`"llava-hf/llava-onevision-qwen2-0.5b-ov-hf"`](https://huggingface.co/llava-hf/llava-onevision-qwen2-0.5b-ov-hf) checkpoint.

```python
from transformers import pipeline
from PIL import Image    
import requests
from transformers import AutoProcessor


model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)

# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image") 
conversation = [
    {

      "role": "user",
      "content": [
          {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "user\n\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nassistant\nLava"}
```

### Using pure `transformers`:

Below is an example script to run generation in `float16` precision on a GPU device:

```python
import requests
from PIL import Image

import torch
from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration

model_id = "llava-hf/llava-onevision-qwen2-0.5b-ov-hf"
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)

processor = AutoProcessor.from_pretrained(model_id)

# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image") 
conversation = [
    {

      "role": "user",
      "content": [
          {"type": "text", "text": "What are these?"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```

### Model optimization

#### 4-bit quantization through `bitsandbytes` library

First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: 

```diff
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   load_in_4bit=True
)
```

#### Use Flash-Attention 2 to further speed-up generation

First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: 

```diff
model = LlavaOnevisionForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   use_flash_attention_2=True
).to(0)
```


### Usage w/ Transformers.js

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```

**Example:** Multi-round conversations w/ PKV caching
```js
import { AutoProcessor, AutoTokenizer, LlavaOnevisionForConditionalGeneration, RawImage } from '@huggingface/transformers';

// Load tokenizer, processor and model
const model_id = 'llava-hf/llava-onevision-qwen2-0.5b-ov-hf';

const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);
const model = await LlavaOnevisionForConditionalGeneration.from_pretrained(model_id, {
    dtype: {
        embed_tokens: 'fp16', // or 'fp32' or 'q8'
        vision_encoder: 'fp16', // or 'fp32' or 'q8'
        decoder_model_merged: 'q4', // or 'q8'
    },
    // device: 'webgpu',
});

// Prepare text inputs
const prompt = 'What does the text say?';
const messages = [
    { role: 'system', content: 'Answer the question.' },
    { role: 'user', content: `<image>\n${prompt}` }
]
const text = tokenizer.apply_chat_template(messages, { tokenize: false, add_generation_prompt: true });
const text_inputs = tokenizer(text);

// Prepare vision inputs
const url = 'https://huggingface.co/qnguyen3/nanoLLaVA/resolve/main/example_1.png';
const image = await RawImage.fromURL(url);
const vision_inputs = await processor(image);

// Generate response
const { past_key_values, sequences } = await model.generate({
    ...text_inputs,
    ...vision_inputs,
    do_sample: false,
    max_new_tokens: 64,
    return_dict_in_generate: true,
});

// Decode output
const answer = tokenizer.decode(
    sequences.slice(0, [text_inputs.input_ids.dims[1], null]),
    { skip_special_tokens: true },
);
console.log(answer);
// The text says "small but mighty" in a playful font.

const new_messages = [
    ...messages,
    { role: 'assistant', content: answer },
    { role: 'user', content: 'How does the text correlate to the context of the image?' }
]
const new_text = tokenizer.apply_chat_template(new_messages, { tokenize: false, add_generation_prompt: true });
const new_text_inputs = tokenizer(new_text);

// Generate another response
const output = await model.generate({
    ...new_text_inputs,
    past_key_values,
    do_sample: false,
    max_new_tokens: 256,
});
const new_answer = tokenizer.decode(
    output.slice(0, [new_text_inputs.input_ids.dims[1], null]),
    { skip_special_tokens: true },
);
console.log(new_answer);
// The text "small but mighty" is likely a playful or humorous reference to the image of the blue mouse with the orange dumbbell. It could be used as a motivational phrase or a playful way to express the idea that even small things can be impressive or powerful.
```

# Citation
```
@misc{li2024llavaonevisioneasyvisualtask,
      title={LLaVA-OneVision: Easy Visual Task Transfer}, 
      author={Bo Li and Yuanhan Zhang and Dong Guo and Renrui Zhang and Feng Li and Hao Zhang and Kaichen Zhang and Yanwei Li and Ziwei Liu and Chunyuan Li},
      year={2024},
      eprint={2408.03326},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2408.03326}, 
}
```