File size: 3,789 Bytes
cd0766f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
---
language:
- en
pipeline_tag: image-to-text
inference: false
arxiv: 2304.08485
---
# LLaVA Model Card
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png)
Below is the model card of Llava model 13b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).
## Model details
**Model type:**
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
It is an auto-regressive language model, based on the transformer architecture.
**Model date:**
LLaVA-v1.5-13B was trained in September 2023.
**Paper or resources for more information:**
https://llava-vl.github.io/
## How to use the model
First, make sure to have `transformers >= 4.35.3`.
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
### Using `pipeline`:
Below we used [`"llava-hf/bakLlava-v1-hf"`](https://huggingface.co/llava-hf/bakLlava-v1-hf) checkpoint.
```python
from transformers import pipeline
from PIL import Image
import request
model_id = "llava-hf/bakLlava-v1-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
```
### Using pure `transformers`:
Below is an example script to run generation in `float16` precision on a GPU device:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "llava-hf/llava-1.5-7b-hf"
prompt = "<image> \nUSER: What are these?\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
### Model optimization
#### 4-bit quantization through `bitsandbytes` library
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
```
#### Use Flash-Attention 2 to further speed-up generation
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
```
## License
Llama 2 is licensed under the LLAMA 2 Community License,
Copyright (c) Meta Platforms, Inc. All Rights Reserved. |