File size: 20,368 Bytes
01f5cc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
import csv
import dataclasses
import subprocess
from copy import deepcopy
import itertools
from concurrent.futures import ThreadPoolExecutor
import pathlib
from typing import List
import diffusers
import transformers
import safetensors.torch
import torch.utils.data
from tqdm import tqdm
from datetime import datetime
import random
import os
import time
from torch.utils.tensorboard import SummaryWriter
torch.manual_seed(0)
random.seed(0)
LATENTS_OUTPUT_DIR = pathlib.Path("latents")
CAPTIONS_OUTPUT_DIR = pathlib.Path("captions2")
DANBOORU_ARTISTS_PATH = pathlib.Path("danbooru_artist.csv")
E621_ARTISTS_PATH = pathlib.Path("e621_artist.csv")
LOCK_FILE = "safetensors.lock"
device = torch.device("cuda")
dtype = torch.float16
train_logger = SummaryWriter(f"logs/pony_scoreless_{datetime.now().strftime('%Y%m%d_%H%M%S')}")
def accumulate_grads():
batch_size = 1
epochs = 1
tokenizer = create_tokenizer(device)
model_a = diffusers.StableDiffusionXLPipeline.from_single_file(
"NoobAI-XL-v1.1.safetensors",
torch_dtype=dtype,
)
delattr(model_a, "vae")
model_a.unet.to(device=device)
# model_a.unet.enable_xformers_memory_efficient_attention()
model_a.unet.enable_gradient_checkpointing()
model_a.text_encoder.to(device=device)
model_a.text_encoder.gradient_checkpointing_enable()
model_a.text_encoder_2.to(device=device)
model_a.text_encoder_2.gradient_checkpointing_enable()
model_a.text_encoder_combined = CombinedCLIPTextEncoder(model_a.text_encoder, model_a.text_encoder_2, batch_size)
model_b = diffusers.StableDiffusionXLPipeline.from_single_file(
"animagine-xl-4.0.safetensors",
torch_dtype=dtype,
)
delattr(model_b, "vae")
model_b.unet.to(device=device)
# model_b.unet.enable_xformers_memory_efficient_attention()
model_b.unet.enable_gradient_checkpointing()
model_b.text_encoder.to(device=device)
model_b.text_encoder.gradient_checkpointing_enable()
model_b.text_encoder_2.to(device=device)
model_b.text_encoder_2.gradient_checkpointing_enable()
model_b.text_encoder_combined = CombinedCLIPTextEncoder(model_b.text_encoder, model_b.text_encoder_2, batch_size)
model_a.unet.eval()
model_a.text_encoder.eval()
model_a.text_encoder_2.eval()
model_b.unet.eval()
model_b.text_encoder.eval()
model_b.text_encoder_2.eval()
# shared_stats = {}
# stats_lock = threading.Lock()
# # Two barriers for synchronization between two threads.
# grad_barrier1 = threading.Barrier(2)
# grad_barrier2 = threading.Barrier(2)
# def scaling_hook_factory(key, branch_id, target_scale=1.0):
# nonlocal shared_stats, stats_lock, grad_barrier1, grad_barrier2
# def scaling_hook(_module, _grad_input, grad_output):
# """
# A full-backward hook that:
# 1. Computes, for each non-None tensor in grad_output, its maximum absolute value.
# We store these in a dictionary (keyed by output index).
# 2. Waits once until both threads have stored their local max values.
# 3. Computes, for each output index, the global maximum from both models.
# 4. Waits a second time to ensure synchronization before clearing the shared stats.
# 5. Scales each non-None output tensor independently using its computed scaling factor.
# Outputs that are None are passed through unchanged.
# """
# # Step 1: Compute and store local maximums per output index.
# print(f"backprop for {key}")
# local_maxes = {}
# for i, g in enumerate(grad_output):
# if g is not None:
# local_maxes[i] = g.detach().abs().max().cpu().item()
# with stats_lock:
# shared_stats[f"{key}_{branch_id}"] = local_maxes
# # Step 2: Wait until both threads have stored their values.
# grad_barrier1.wait()
# # Step 3: Compute the global maximum for each output index.
# with stats_lock:
# stats_a = shared_stats.get(f"{key}_a", {})
# stats_b = shared_stats.get(f"{key}_b", {})
# # Build a dictionary for global max per output index.
# global_maxes = {}
# for i in local_maxes.keys():
# assert i in stats_a and i in stats_b, key
# global_maxes[i] = max(stats_a[i], stats_b[i])
# # Step 4: Wait again to ensure both threads have computed the global values.
# barrier_val = grad_barrier2.wait()
# # Let only one thread clear the shared stats.
# if barrier_val == 0:
# with stats_lock:
# shared_stats.pop(f"{key}_a")
# shared_stats.pop(f"{key}_b")
# # Step 5: For each output tensor, compute a scaling factor and apply it.
# scaled_outputs = []
# for i, g in enumerate(grad_output):
# if g is not None:
# global_max = global_maxes[i]
# # Compute scaling factor only if global_max is positive and below target_scale.
# if 0 < global_max < target_scale:
# g = g * (target_scale / global_max)
# scaled_outputs.append(g)
# else:
# scaled_outputs.append(None)
# return tuple(scaled_outputs)
# return scaling_hook
# for model, branch_id in zip((model_a, model_b), ("a", "b")):
# for k, v in get_modules(model):
# if k.endswith("transformer_blocks") or k.endswith("encoder.layers"):
# for i, module in enumerate(v):
# module.register_full_backward_hook(scaling_hook_factory(f"{k}.{i}", branch_id))
scheduler = create_scheduler(device)
data_loader = get_data_loader(tokenizer, batch_size)
total_steps = 0
log_scalars_a = {}
log_scalars_b = {}
log_scalars_sync = {}
n1 = torch.tensor(-1, device=device, dtype=torch.long)
ldexp_offset = torch.tensor(20, device=device, dtype=torch.long)
def create_hook(param, k, log_scalars):
param.grad = torch.zeros_like(param)
log_scalars[k] = ldexp_offset.clone()
def hook(grad):
nonlocal param, log_scalars, k
while True:
new_grad = param.grad + grad.abs().ldexp(log_scalars[k])
if not new_grad.isfinite().all(): # overflow
log_scalars[k] -= 1
param.grad.ldexp_(n1)
else:
break
param.grad.copy_(new_grad)
return param.grad
return hook
for model, log_scalars in ((model_a, log_scalars_a), (model_b, log_scalars_b)):
for k, v in get_params(model):
v.register_hook(create_hook(v, k, log_scalars))
# for model, path in ((model_a, "grads_a.safetensors"), (model_b, "grads_b.safetensors")):
# with safetensors.safe_open(path, "pt") as f:
# for k, v in get_params(model):
# if k in f.keys():
# v.grad = f.get_tensor(k).to(v)
noisy_latents = timesteps = time_ids = None
def get_pred(args):
nonlocal noisy_latents, timesteps, time_ids
model, tokens = args
txt = model.text_encoder_combined(tokens[0])
return model.unet(
noisy_latents,
timesteps,
encoder_hidden_states=txt["conds"],
added_cond_kwargs={
"text_embeds": txt["pooled"],
"time_ids": time_ids,
},
).sample
params = list(v for k, v in itertools.chain(get_params(model_a), get_params(model_b)))
with ThreadPoolExecutor(max_workers=2) as worker:
for epoch_i in range(epochs):
for step_i, (latent_infos, tokens_a, tokens_b, post_ids) in enumerate(tqdm(data_loader)):
latents = torch.cat([latent_info["latent"] for latent_info in latent_infos], dim=0).to(device=device, dtype=dtype)
crop_hw = torch.stack([latent_info["crop_hw"] for latent_info in latent_infos]).to(device=device)
orig_hw = torch.stack([latent_info["orig_hw"] for latent_info in latent_infos]).to(device=device)
noise, noisy_latents, timesteps = get_noise_noisy_latents_and_timesteps(scheduler, latents)
time_ids = get_add_time_ids(orig_hw, crop_hw)
# if step_i < 1000:
# total_steps += batch_size
# continue
pred_a, pred_b = worker.map(get_pred, ((model_a, tokens_a), (model_b, tokens_b)))
mse = torch.nn.functional.mse_loss(pred_a, pred_b, reduction="none").flatten(start_dim=1).mean(dim=-1)
loss = (mse / mse.detach()).mean()
train_logger.add_scalar("grads/loss", loss.item(), total_steps)
train_logger.add_scalar("grads/loss_raw", mse.mean().item(), total_steps)
train_logger.add_scalar("grads/timestep", timesteps[0].item(), total_steps)
torch.autograd.grad(loss, params, retain_graph=False, allow_unused=True) # calls backward hooks
for (k, v_a), (k_b, v_b) in zip(get_params(model_a), get_params(model_b)):
assert k == k_b
if v_a.grad is not None and v_b.grad is not None:
while log_scalars_a[k] > log_scalars_b[k]:
log_scalars_a[k] -= 1
v_a.grad.ldexp_(n1)
while log_scalars_b[k] > log_scalars_a[k]:
log_scalars_b[k] -= 1
v_b.grad.ldexp_(n1)
log_scalars_sync[k] = log_scalars_a[k]
if (step_i + 1) % 10 == 0:
train_logger.add_scalar("grads/max_a", max(v.grad.max().item() for k, v in get_params(model_a) if v.grad is not None), total_steps)
train_logger.add_scalar("grads/max_b", max(v.grad.max().item() for k, v in get_params(model_b) if v.grad is not None), total_steps)
if (step_i + 1) % 1000 == 0:
save_grads(model_a, "grads_a.safetensors", first=True)
safetensors.torch.save_file(log_scalars_sync, "log_scalars.safetensors")
save_grads(model_b, "grads_b.safetensors", last=True)
total_steps += batch_size
def get_modules(model):
return itertools.chain(
prefix_iter(model.unet.named_modules(), "unet."),
prefix_iter(model.text_encoder.named_modules(), "text_encoder."),
prefix_iter(model.text_encoder_2.named_modules(), "text_encoder_2."),
)
def get_params(model):
return itertools.chain(
prefix_iter(model.unet.named_parameters(), "unet."),
prefix_iter(model.text_encoder.named_parameters(), "text_encoder."),
prefix_iter(model.text_encoder_2.named_parameters(), "text_encoder_2."),
)
def prefix_iter(item_iter, prefix):
return ((prefix + k, v) for k, v in item_iter)
def save_grads(model, path, first=False, last=False):
if first:
wait_for_lock_removal()
safetensors.torch.save_file(
{k: v.grad.cpu().contiguous() for k, v in get_params(model) if v.grad is not None},
path,
)
if last:
# Create a lock file to signal that new checkpoints have been saved
with open(LOCK_FILE, "w") as f:
f.write("pending download")
print("Checkpoint pair saved, lock file created.")
def wait_for_lock_removal(poll_interval=5):
"""Wait until the lock file is removed by the local download script."""
while os.path.exists(LOCK_FILE):
time.sleep(poll_interval)
def create_scheduler(device: torch.device):
scheduler = diffusers.DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
clip_sample=False,
)
inv_snr = ((1-scheduler.alphas_cumprod) / scheduler.alphas_cumprod).to(device)
scheduler.inv_snr = inv_snr
scheduler.inv_snr_weights = inv_snr / inv_snr.sum()
return scheduler
def debiased_loss_scaling(timesteps, noise_scheduler):
return noise_scheduler.inv_snr[timesteps]
def get_noise_noisy_latents_and_timesteps(scheduler, latents):
batch_size = latents.shape[0]
noise = torch.randn_like(latents, device=latents.device)
timesteps = torch.multinomial(scheduler.inv_snr_weights, batch_size)
noisy_latents = scheduler.add_noise(latents, noise, timesteps)
return noise, noisy_latents, timesteps
def get_add_time_ids(original_size, crops_coords_top_left):
add_time_ids = torch.cat([
original_size,
crops_coords_top_left,
torch.tensor([[1024]*2], device=original_size.device).expand(len(original_size), -1),
], dim=1)
return add_time_ids
def get_data_loader(tokenizer, batch_size: int):
return torch.utils.data.DataLoader(
PromptDataset(tokenizer),
batch_size=batch_size,
shuffle=True,
collate_fn=lambda x: zip(*x),
)
@dataclasses.dataclass
class ArtistScore:
artist_tag: str
count: int
class PromptDataset(torch.utils.data.Dataset):
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.latent_paths = list(LATENTS_OUTPUT_DIR.iterdir())
with open(DANBOORU_ARTISTS_PATH, "r", encoding='utf-8') as f:
reader = csv.DictReader(f)
self.b_artists = [ArtistScore(r["trigger"], int(r["count"])) for r in reader if r["artist"] != "banned_artist"]
self.b_artists.sort(key=lambda t: t.count, reverse=True)
self.b_artist_scores = torch.tensor(list(map(lambda t: t.count, self.b_artists)), device=device, dtype=torch.float32)
self.b_artist_scores /= self.b_artist_scores.sum()
with open(E621_ARTISTS_PATH, "r", encoding='utf-8') as f:
reader = csv.DictReader(f,)
self.a_artists = self.b_artists + [ArtistScore(r["trigger"], int(r["count"])) for r in reader if r["artist"] not in ["conditional_dnp", "avoid_posting", "unknown_artist", "third-party_edit", "sound_warning", "anonymous_artist"]]
self.a_artists.sort(key=lambda t: t.count, reverse=True)
self.a_artist_scores = torch.tensor(list(map(lambda t: t.count, self.a_artists)), device=device, dtype=torch.float32)
self.a_artist_scores /= self.a_artist_scores.sum()
self.a_prefix = "masterpiece, best quality, newest, absurdres, highres, safe, "
self.b_suffix = ", masterpiece, high score, great score, absurdres"
def __len__(self):
return len(self.latent_paths)
def __getitem__(self, item):
post_id = self.latent_paths[item].stem
latent = safetensors.torch.load_file(LATENTS_OUTPUT_DIR / f"{post_id}.safetensors", device=str(device))
caption = (CAPTIONS_OUTPUT_DIR / f"{post_id}.txt").read_text()
caption_a = self.a_prefix + caption
caption_b = caption + self.b_suffix
if item % 2 == 0:
artist_a = self.a_artists[torch.multinomial(self.a_artist_scores, 1).item()]
caption_a = artist_a.artist_tag + ", " + caption_a
else:
artist_b = self.b_artists[torch.multinomial(self.b_artist_scores, 1).item()]
caption_b = artist_b.artist_tag + ", " + caption_b
tokens_a = self.tokenizer.chunk_tokens(self.tokenizer([caption_a.replace("),", ") ,")]))
tokens_b = self.tokenizer.chunk_tokens(self.tokenizer([caption_b.replace("),", ") ,")]))
return latent, tokens_a, tokens_b, post_id
class CombinedCLIPTextEncoder(torch.nn.Module):
def __init__(self, clip_l, clip_g, batch_size):
super().__init__()
assert batch_size == 1
self.clip_l = clip_l
self.clip_g = clip_g
def forward(self, tokens):
tokens_clip_l = tokens["clip_l"].copy()
del tokens_clip_l["prompt_starts"]
tokens_clip_g = tokens["clip_g"].copy()
clip_g_starts = tokens_clip_g.pop("prompt_starts")
clip_l_encoded = self.clip_l(**tokens_clip_l, output_hidden_states=True, return_dict=True)
clip_g_encoded = self.clip_g(**tokens_clip_g, output_hidden_states=True, return_dict=True)
combined_encoded = torch.cat([clip_l_encoded["hidden_states"][-2], clip_g_encoded["hidden_states"][-2]], dim=-1)
combined_encoded_reshape = combined_encoded.reshape(1, -1, 2048)
return {
"conds": combined_encoded_reshape,
"pooled": clip_g_encoded.text_embeds[clip_g_starts],
}
def create_tokenizer(device: torch.device):
tokenizer_l = transformers.CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
tokenizer_g = transformers.CLIPTokenizer.from_pretrained("laion/CLIP-ViT-g-14-laion2B-s34B-b88K")
return CombinedCLIPTokenizer(tokenizer_l, tokenizer_g, device)
class CombinedCLIPTokenizer(torch.nn.Module):
comma_token = 267
def __init__(self, tokenizer_l, tokenizer_g, output_device: torch.device):
super().__init__()
self.tokenizer_l = tokenizer_l
self.tokenizer_g = tokenizer_g
self.output_device = output_device
def forward(self, prompts: List[str]) -> dict:
tokens_l = self.tokenizer_l(prompts, add_special_tokens=False)
return {
"clip_l": tokens_l,
"clip_g": deepcopy(tokens_l),
}
def chunk_tokens(self, tokens: dict):
return {
"clip_l": self._chunk_tokens_impl(self.tokenizer_l, tokens["clip_l"]),
"clip_g": self._chunk_tokens_impl(self.tokenizer_g, tokens["clip_g"]),
}
def _chunk_tokens_impl(self, tokenizer, tokens: dict):
input_ids = []
attention_masks = []
chunk_counts = []
for prompt, mask in zip(tokens["input_ids"], tokens["attention_mask"]):
last_comma = 0
current_chunk = []
chunks = []
chunks_attn = []
def next_chunk():
nonlocal current_chunk
current_chunk = [tokenizer.bos_token_id] + current_chunk + [tokenizer.eos_token_id]
num_tokens = len(current_chunk)
current_chunk.extend([tokenizer.pad_token_id] * (77 - num_tokens))
chunks.append(current_chunk)
current_chunk = []
chunks_attn.append([1] * num_tokens + [0] * (77 - num_tokens))
for token_i, token in enumerate(prompt):
is_last_token = token_i == len(prompt) - 1
seq_suffix = prompt[last_comma:token_i + int(is_last_token)]
if token == self.comma_token or is_last_token:
if len(current_chunk) + len(seq_suffix) > 77 - 2: # leave space for bos and eos
next_chunk()
seq_suffix = prompt[last_comma+1:token_i + int(is_last_token)] # remove leading comma
# can always append, sequences without commas will never be longer than 77 tokens
current_chunk.extend(seq_suffix)
last_comma = token_i
if current_chunk or not chunks:
next_chunk()
chunk_counts.append(len(chunks))
input_ids.extend(chunks)
attention_masks.extend(chunks_attn)
return {
"input_ids": torch.tensor(input_ids, device=self.output_device),
"attention_mask": torch.tensor(attention_masks, device=self.output_device),
"prompt_starts": torch.tensor([0] + chunk_counts[:-1], device=self.output_device).cumsum(dim=0),
}
def shutdown_machine():
"""Shutdown the machine. Adjust the command as necessary for your environment."""
wait_for_lock_removal()
print("All checkpoints have been downloaded. Shutting down the machine.")
try:
subprocess.run("runpodctl stop pod $RUNPOD_POD_ID", shell=True, check=True)
except Exception as e:
print(f"Error shutting down: {e}")
if __name__ == "__main__":
accumulate_grads()
shutdown_machine()
|