Melanoma-003 / README.md
lizardwine's picture
Update README.md
47ae6a2 verified
|
raw
history blame
5.15 kB
metadata
license: apache-2.0

🦠 Melanoma Detection Model

πŸ“„ Overview

πŸ€– Model Name: Melanoma Detection Model

🧠 Model Type: Convolutional Neural Network (CNN)

πŸ“Š Input: 224x224 RGB images of skin lesions

πŸ”’ Output: A binary classification (Melanoma or Not Melanoma)

🎯 Purpose: To identify and classify skin lesions as melanoma or non-melanoma with high accuracy

☁️ Download: Click here to download


πŸ“š Description

This model is designed to detect melanoma from skin lesion images. It processes input images of size 224x224 pixels and outputs a binary classification indicating whether the lesion is melanoma or not. The model is trained to differentiate between malignant melanoma and benign conditions.


πŸ” Use Cases

  1. Medical Diagnosis: πŸ₯ Assisting dermatologists in diagnosing melanoma from images.
  2. Skin Cancer Screening: 🩺 Enhancing early detection efforts in large-scale skin cancer screening programs.
  3. Patient Monitoring: πŸ‘©β€βš•οΈ Helping in monitoring patients with a history of melanoma or high risk.

πŸ“ˆ Performance

πŸ” Accuracy: ~99% on the Skin Cancer Dataset

πŸ•’ Latency: Suitable for real-time analysis in clinical settings.


πŸ› οΈ Technical Details

  • Based on: MobileNetV2
  • Architecture: Convolutional Neural Network (CNN)
  • Layers: Convolutional layers, pooling layers, fully connected layers
  • Activation Functions: ReLU, Sigmoid

πŸ“₯ Input Format

  • Type: RGB image
  • Shape: 224x224 pixels
  • Range: 0-1 (pixel intensity)

πŸ“€ Output Format

  • Type: Binary classification
  • Shape: Scalar value
  • Range: 0 (Not Melanoma), 1 (Melanoma)

🧩 Model Training

  • Dataset: Skin Cancer Dataset πŸ“š
  • First step:
    • Training Epochs: 50
    • Batch Size: 32
    • Optimizer: Adam
    • Learning rate: 1e-5
    • Layers: Only last layer
  • Second step:
    • Training Epochs: 5
    • Batch Size: 32
    • Optimizer: Adam
    • Learning rate: 1e-5
    • Layers: All layers

πŸ’‘ How to Use

  1. Preprocess the Image: Resize and normalize the image to 224x224 pixels with pixel values between 0 and 1.
  2. Feed the Image: Input the preprocessed image into the model.
  3. Interpret the Output: Analyze the output to determine if the lesion is melanoma or not.

Loading the Model

To use the model, first, load it using your preferred framework.

import tensorflow as tf

# Load the pre-trained model
model = tf.keras.models.load_model('path/to/Melanoma-003.keras')

Preprocessing the Input

Preprocess the input image to fit the model's requirements.

import numpy as np
from tensorflow.keras.preprocessing import image

def preprocess_image(img_path):
    # Load the image
    img = image.load_img(img_path, target_size=(224, 224))
    # Convert to numpy array
    img_array = image.img_to_array(img)
    # Normalize the image
    img_array = img_array / 255.0
    # Reshape to add batch dimension
    img_array = np.expand_dims(img_array, axis=0)
    return img_array

# Example usage
img_path = 'path/to/your/image.jpg'
processed_image = preprocess_image(img_path)

Making Predictions

Use the model to predict if the lesion is melanoma.

# Predict the class
prediction = model.predict(processed_image)

# Interpret the result
if prediction[0] > 0.5:
    print('The lesion is classified as Melanoma.')
else:
    print('The lesion is classified as Not Melanoma.')

Full Example

Combining all steps into a single example.

import tensorflow as tf
import numpy as np
from tensorflow.keras.preprocessing import image

# Load the pre-trained model
model = tf.keras.models.load_model('path/to/MelanomaDetectionModel.h5')

def preprocess_image(img_path):
    img = image.load_img(img_path, target_size=(224, 224))
    img_array = image.img_to_array(img)
    img_array = img_array / 255.0
    img_array = np.expand_dims(img_array, axis=0)
    return img_array

img_path = 'path/to/your/image.jpg'
processed_image = preprocess_image(img_path)

prediction = model.predict(processed_image)
if prediction[0] > 0.5:
    print('The lesion is classified as Melanoma.')
else:
    print('The lesion is classified as Not Melanoma.')

⚠️ Limitations

  • Image Quality: Performance may be affected by poor-quality or low-resolution images.
  • Generalization: Model performance may vary with images not represented in the training data.

πŸ‘₯ Contributors

  • Developer: Lizardwine (x@lizardwine.com)
  • Organization: lizardwine
  • Date: 05/09/2024

πŸ“ References

  • Skin Cancer Dataset: Link
  • MobileNetV2: Link