metadata
license: apache-2.0
tags:
- summarization
- generated_from_trainer
datasets:
- wiki_lingua
metrics:
- rouge
model-index:
- name: wiki_lingua-ar-8-8-5.6e-05-mt5-small-finetuned
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: wiki_lingua
type: wiki_lingua
config: ar
split: test
args: ar
metrics:
- name: Rouge1
type: rouge
value: 0.5417
wiki_lingua-ar-8-8-5.6e-05-mt5-small-finetuned
This model is a fine-tuned version of google/mt5-small on the wiki_lingua dataset. It achieves the following results on the evaluation set:
- Loss: 2.3401
- Rouge1: 0.5417
- Rouge2: 0.0921
- Rougel: 0.5445
- Rougelsum: 0.5404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.851 | 1.0 | 2499 | 2.5949 | 0.4653 | 0.1378 | 0.4684 | 0.4631 |
3.0409 | 2.0 | 4998 | 2.4790 | 0.4825 | 0.1156 | 0.4834 | 0.4798 |
2.8824 | 3.0 | 7497 | 2.4273 | 0.5264 | 0.1331 | 0.5307 | 0.522 |
2.7853 | 4.0 | 9996 | 2.3945 | 0.4879 | 0.1191 | 0.4871 | 0.4811 |
2.7221 | 5.0 | 12495 | 2.3678 | 0.5655 | 0.0981 | 0.5672 | 0.5595 |
2.6797 | 6.0 | 14994 | 2.3511 | 0.5002 | 0.1191 | 0.5084 | 0.4968 |
2.6516 | 7.0 | 17493 | 2.3409 | 0.5606 | 0.1138 | 0.5631 | 0.5578 |
2.6364 | 8.0 | 19992 | 2.3401 | 0.5417 | 0.0921 | 0.5445 | 0.5404 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2