lixiqi commited on
Commit
d72263d
1 Parent(s): a33ce7f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - summarization
5
+ - generated_from_trainer
6
+ datasets:
7
+ - wiki_lingua
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: wiki_lingua-ar-8-8-5.6e-05-mt5-small-finetuned
12
+ results:
13
+ - task:
14
+ name: Sequence-to-sequence Language Modeling
15
+ type: text2text-generation
16
+ dataset:
17
+ name: wiki_lingua
18
+ type: wiki_lingua
19
+ config: ar
20
+ split: test
21
+ args: ar
22
+ metrics:
23
+ - name: Rouge1
24
+ type: rouge
25
+ value: 0.5417
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # wiki_lingua-ar-8-8-5.6e-05-mt5-small-finetuned
32
+
33
+ This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the wiki_lingua dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 2.3401
36
+ - Rouge1: 0.5417
37
+ - Rouge2: 0.0921
38
+ - Rougel: 0.5445
39
+ - Rougelsum: 0.5404
40
+
41
+ ## Model description
42
+
43
+ More information needed
44
+
45
+ ## Intended uses & limitations
46
+
47
+ More information needed
48
+
49
+ ## Training and evaluation data
50
+
51
+ More information needed
52
+
53
+ ## Training procedure
54
+
55
+ ### Training hyperparameters
56
+
57
+ The following hyperparameters were used during training:
58
+ - learning_rate: 5.6e-05
59
+ - train_batch_size: 8
60
+ - eval_batch_size: 8
61
+ - seed: 42
62
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
+ - lr_scheduler_type: linear
64
+ - num_epochs: 8
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
69
+ |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
70
+ | 3.851 | 1.0 | 2499 | 2.5949 | 0.4653 | 0.1378 | 0.4684 | 0.4631 |
71
+ | 3.0409 | 2.0 | 4998 | 2.4790 | 0.4825 | 0.1156 | 0.4834 | 0.4798 |
72
+ | 2.8824 | 3.0 | 7497 | 2.4273 | 0.5264 | 0.1331 | 0.5307 | 0.522 |
73
+ | 2.7853 | 4.0 | 9996 | 2.3945 | 0.4879 | 0.1191 | 0.4871 | 0.4811 |
74
+ | 2.7221 | 5.0 | 12495 | 2.3678 | 0.5655 | 0.0981 | 0.5672 | 0.5595 |
75
+ | 2.6797 | 6.0 | 14994 | 2.3511 | 0.5002 | 0.1191 | 0.5084 | 0.4968 |
76
+ | 2.6516 | 7.0 | 17493 | 2.3409 | 0.5606 | 0.1138 | 0.5631 | 0.5578 |
77
+ | 2.6364 | 8.0 | 19992 | 2.3401 | 0.5417 | 0.0921 | 0.5445 | 0.5404 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.27.4
83
+ - Pytorch 1.13.0
84
+ - Datasets 2.1.0
85
+ - Tokenizers 0.13.2