lixiqi's picture
update model card README.md
ad3211a
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - image_folder
metrics:
  - accuracy
model-index:
  - name: >-
      beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-finetuned-FER2013-7e-05
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: image_folder
          type: image_folder
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5259515570934256

beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05-finetuned-FER2013-7e-05

This model is a fine-tuned version of lixiqi/beit-base-patch16-224-pt22k-ft22k-finetuned-FER2013-7e-05 on the image_folder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5659
  • Accuracy: 0.5260

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6537 0.97 14 1.4980 0.4683
1.4325 1.97 28 1.4777 0.5040
1.1532 2.97 42 1.5007 0.4960
1.0428 3.97 56 1.5480 0.4890
0.8716 4.97 70 1.5659 0.5260
0.892 5.97 84 1.6132 0.4960
0.8109 6.97 98 1.5895 0.5167
0.7413 7.97 112 1.6271 0.5202
0.765 8.97 126 1.5991 0.5040
0.6575 9.97 140 1.6041 0.4960

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1