File size: 13,153 Bytes
26d475a
 
 
 
 
 
 
 
 
 
 
1cf0c70
26d475a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf0c70
26d475a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf0c70
26d475a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cf0c70
26d475a
 
 
 
eab759c
26d475a
 
eab759c
 
 
26d475a
 
 
 
 
 
 
 
f759a95
 
26d475a
 
 
 
 
 
 
 
 
 
 
 
 
1cf0c70
21982ea
9bc7615
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df2ee29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a692f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f309e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ecbaf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1870fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a79254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f759a95
 
 
 
 
 
 
 
 
 
26d475a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b12ae8a3-9e08-402c-894c-31697fad6c56",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "eab00695e2b240ffb58ab998c85c0e7d",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from huggingface_hub import notebook_login\n",
    "\n",
    "notebook_login()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "160c80c1-0ca4-45df-8171-87cd3c88a223",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "from transformers import (\n",
    "    AutoTokenizer,\n",
    "    DataCollatorWithPadding,\n",
    "    Trainer,\n",
    "    TrainingArguments,\n",
    ")\n",
    "from utils import ConsistentSentenceRegressor, get_metrics, load_dataset"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "25800588-5d42-4524-9dc6-a6a0c180b8b0",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "                                                  text  label\n",
      "512  カーキ色の服を着た男性が、口元にリンゴを当てています。[SEP]カーキ色の服を着た男性が、口...    0.0\n",
      "513    男性がグラウンドでボールを投げています。[SEP]白い髯を生やした男性がボールを投げています。    0.5\n",
      "514  椅子に座った子供が、手づかみで食事をしています。[SEP]椅子に座った子供が手づかみで、食事...    1.0\n",
      "515         プロペラ機が何台も駐機しています。[SEP]プロペラ機が何台も連なって飛んでいます。    0.0\n",
      "516  消火栓から水が勢いよく噴き出しています。[SEP]水が噴き出している消火栓の水を浴びるように...    0.5\n",
      "517  冷蔵庫のないキッチンにナイフとフォークが置かれています。[SEP]冷蔵庫の置かれたキッチンに...    0.0\n",
      "518  うみでサーフィンをしているひとがいます。[SEP]黒いウェットスーツを着た人がサーフボードに...    0.5\n",
      "519             池から白い鳥が飛び立っています。[SEP]森にある水の上を鳥が飛んでいます。    0.5\n",
      "520       丈夫なビーチパラソルが立っています。[SEP]ビーチパラソルの支柱が折れ曲がっています。    0.0\n",
      "521  白髪の男性が少女から花束を受け取っています。[SEP]花束を持った男性の前に多くの子供たちが...    0.5\n",
      "                                                text  label\n",
      "0    赤いひとつの傘に、二人の人が入っています。[SEP]歩道を歩く通行人が傘をさして歩いています。    0.5\n",
      "1              川を小さなボートが進んで行きます。[SEP]川を豪華客船が進んでいきます。    0.0\n",
      "2  ゲレンデのこぶでスキージャンプしています。[SEP]雪上でモーグルを楽しむ水色のウェアを着た女性。    0.5\n",
      "3       黒いお皿に乗っているピザをカットしています。[SEP]黒い皿の上にピザが盛られています。    1.0\n",
      "4    女性が目を細めて携帯電話で話をしています。[SEP]目を細めた女性が携帯電話で話をしています。    1.0\n",
      "5  バナナやパパイヤなどの果物が売られている。[SEP]台の上にはバナナなどの青果が並べられています。    0.5\n",
      "6  ヘッドライトを点灯させた白いバスが駐車場に止まっています。[SEP]ライトを点灯させているバ...    1.0\n",
      "7  水面の上に、カイトサーフィンの凧が揚がっています。[SEP]海の上に水上スポーツ用の凧が揚が...    0.5\n",
      "8        ホットドッグを野外で食べている人たちです。[SEP]家の中でホットドッグを食べている。    0.0\n",
      "9  草が生い茂っている所に、3頭のゾウがいます。[SEP]草むらの中に三頭のゾウが立っているとこ...    0.5\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "f20c88d0f96c4c06a9a0ddf835e544e3",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/19561 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no padding.\n",
      "Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. Default to no truncation.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "97591288ca9d40fd91e7737b41828f63",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Map:   0%|          | 0/512 [00:00<?, ? examples/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "tokenizer = AutoTokenizer.from_pretrained(\"line-corporation/line-distilbert-base-japanese\")\n",
    "dataset = load_dataset('train-v1.1.json')\n",
    "tokenized_dataset = dataset.map(\n",
    "    lambda examples: tokenizer(examples[\"text\"], padding='max_length', truncation=True), batched=True\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6bc83d4c-378c-4313-b641-8ead0c02f715",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "WARNING:root:XRT configuration not detected. Defaulting to preview PJRT runtime. To silence this warning and continue using PJRT, explicitly set PJRT_DEVICE to a supported device or configure XRT. To disable default device selection, set PJRT_SELECT_DEFAULT_DEVICE=0\n",
      "WARNING:root:For more information about the status of PJRT, see https://github.com/pytorch/xla/blob/master/docs/pjrt.md\n",
      "WARNING:root:Defaulting to PJRT_DEVICE=CPU\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "\n",
       "    <div>\n",
       "      \n",
       "      <progress value='7971' max='30600' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
       "      [ 7971/30600 16:14 < 46:07, 8.18 it/s, Epoch 26.05/100]\n",
       "    </div>\n",
       "    <table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       " <tr style=\"text-align: left;\">\n",
       "      <th>Epoch</th>\n",
       "      <th>Training Loss</th>\n",
       "      <th>Validation Loss</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <td>1</td>\n",
       "      <td>No log</td>\n",
       "      <td>0.085583</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>2</td>\n",
       "      <td>0.104100</td>\n",
       "      <td>0.081926</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>3</td>\n",
       "      <td>0.104100</td>\n",
       "      <td>0.079540</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>4</td>\n",
       "      <td>0.091900</td>\n",
       "      <td>0.078066</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>5</td>\n",
       "      <td>0.087600</td>\n",
       "      <td>0.076963</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>6</td>\n",
       "      <td>0.087600</td>\n",
       "      <td>0.075823</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>7</td>\n",
       "      <td>0.084500</td>\n",
       "      <td>0.075087</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>8</td>\n",
       "      <td>0.084500</td>\n",
       "      <td>0.075002</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>9</td>\n",
       "      <td>0.083000</td>\n",
       "      <td>0.073672</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>10</td>\n",
       "      <td>0.080900</td>\n",
       "      <td>0.073238</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>11</td>\n",
       "      <td>0.080900</td>\n",
       "      <td>0.072717</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>12</td>\n",
       "      <td>0.080200</td>\n",
       "      <td>0.072234</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>13</td>\n",
       "      <td>0.080200</td>\n",
       "      <td>0.071684</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>14</td>\n",
       "      <td>0.079700</td>\n",
       "      <td>0.072137</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>15</td>\n",
       "      <td>0.078000</td>\n",
       "      <td>0.071143</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>16</td>\n",
       "      <td>0.078000</td>\n",
       "      <td>0.070724</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>17</td>\n",
       "      <td>0.076500</td>\n",
       "      <td>0.070303</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>18</td>\n",
       "      <td>0.077400</td>\n",
       "      <td>0.069888</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>19</td>\n",
       "      <td>0.077400</td>\n",
       "      <td>0.069760</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>20</td>\n",
       "      <td>0.076200</td>\n",
       "      <td>0.069610</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>21</td>\n",
       "      <td>0.076200</td>\n",
       "      <td>0.069183</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>22</td>\n",
       "      <td>0.075600</td>\n",
       "      <td>0.069061</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>23</td>\n",
       "      <td>0.075600</td>\n",
       "      <td>0.068791</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>24</td>\n",
       "      <td>0.075600</td>\n",
       "      <td>0.068658</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>25</td>\n",
       "      <td>0.075000</td>\n",
       "      <td>0.068027</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <td>26</td>\n",
       "      <td>0.075000</td>\n",
       "      <td>0.068032</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table><p>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "model = ConsistentSentenceRegressor(\n",
    "    freeze_bert=True)\n",
    "\n",
    "training_args = TrainingArguments(\n",
    "    output_dir=\".\",\n",
    "    learning_rate=1e-5,\n",
    "    per_device_train_batch_size=64,\n",
    "    num_train_epochs=100,\n",
    "    weight_decay=0.02,\n",
    "    evaluation_strategy=\"epoch\",\n",
    "    eval_accumulation_steps=1,\n",
    "    save_strategy=\"epoch\",\n",
    "    load_best_model_at_end=True,\n",
    "    push_to_hub=True,\n",
    ")\n",
    "\n",
    "data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
    "trainer = Trainer(\n",
    "    model=model,\n",
    "    args=training_args,\n",
    "    train_dataset=tokenized_dataset[\"train\"],\n",
    "    eval_dataset=tokenized_dataset[\"test\"],\n",
    "    tokenizer=tokenizer,\n",
    "    data_collator=data_collator,\n",
    ")\n",
    "\n",
    "trainer.train()\n",
    "trainer.push_to_hub('factual-consistency-regression-ja')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a6eb93f7-5a38-49a2-be0d-e42267e23a0a",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3638c8d8-fc85-4caf-83a4-4fd2ad6fb95d",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "environment": {
   "kernel": "python3",
   "name": "pytorch-gpu.2-0.m112",
   "type": "gcloud",
   "uri": "gcr.io/deeplearning-platform-release/pytorch-gpu.2-0:m112"
  },
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}