File size: 3,027 Bytes
ce0b02e
 
 
 
 
3c2ac76
ce0b02e
 
 
 
 
 
3c2ac76
ce0b02e
 
 
3c2ac76
 
ce0b02e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c2ac76
ce0b02e
 
 
 
 
3c2ac76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce0b02e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: roberta-base-mnli_ChcE
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-mnli_ChcE

This model is a fine-tuned version of [WillHeld/roberta-base-mnli](https://huggingface.co/WillHeld/roberta-base-mnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7094
- Acc: 0.8698

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Acc    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.3102        | 0.17  | 2000  | 0.4135          | 0.8545 |
| 0.3046        | 0.33  | 4000  | 0.4024          | 0.8645 |
| 0.3038        | 0.5   | 6000  | 0.3936          | 0.8668 |
| 0.3012        | 0.67  | 8000  | 0.4007          | 0.8625 |
| 0.2979        | 0.83  | 10000 | 0.4235          | 0.8620 |
| 0.2997        | 1.0   | 12000 | 0.4031          | 0.8644 |
| 0.2099        | 1.17  | 14000 | 0.4393          | 0.8633 |
| 0.2114        | 1.33  | 16000 | 0.4662          | 0.8628 |
| 0.2147        | 1.5   | 18000 | 0.4331          | 0.8648 |
| 0.2122        | 1.67  | 20000 | 0.4166          | 0.8702 |
| 0.2156        | 1.83  | 22000 | 0.4463          | 0.8633 |
| 0.2117        | 2.0   | 24000 | 0.4637          | 0.8680 |
| 0.1469        | 2.17  | 26000 | 0.5211          | 0.8681 |
| 0.1526        | 2.33  | 28000 | 0.5206          | 0.8620 |
| 0.1494        | 2.5   | 30000 | 0.5168          | 0.8664 |
| 0.1519        | 2.67  | 32000 | 0.4830          | 0.8700 |
| 0.152         | 2.84  | 34000 | 0.5465          | 0.8636 |
| 0.1498        | 3.0   | 36000 | 0.5550          | 0.8680 |
| 0.1131        | 3.17  | 38000 | 0.6764          | 0.8602 |
| 0.1135        | 3.34  | 40000 | 0.6200          | 0.8657 |
| 0.1175        | 3.5   | 42000 | 0.5889          | 0.8671 |
| 0.1156        | 3.67  | 44000 | 0.6300          | 0.8663 |
| 0.1104        | 3.84  | 46000 | 0.6045          | 0.8690 |
| 0.1111        | 4.0   | 48000 | 0.6413          | 0.8694 |
| 0.086         | 4.17  | 50000 | 0.7271          | 0.8658 |
| 0.0895        | 4.34  | 52000 | 0.7274          | 0.8683 |
| 0.0867        | 4.5   | 54000 | 0.7226          | 0.8658 |
| 0.0886        | 4.67  | 56000 | 0.7182          | 0.8691 |
| 0.0849        | 4.84  | 58000 | 0.7094          | 0.8698 |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.12.1