File size: 20,426 Bytes
8ab6ceb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
# -*- coding: utf-8 -*-
"""
Created on Nov 03 20:08:30 2022
@author: luol2
"""
import logging
import regex
import sys
import io
"""
A Python 3 refactoring of Vincent Van Asch's Python 2 code at
http://www.cnts.ua.ac.be/~vincent/scripts/abbreviations.py
Based on
A Simple Algorithm for Identifying Abbreviations Definitions in Biomedical Text
A. Schwartz and M. Hearst
Biocomputing, 2003, pp 451-462.
"""
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
log = logging.getLogger('Abbre')
class Candidate(str):
def __init__(self, value):
super().__init__()
self.start = 0
self.stop = 0
def set_position(self, start, stop):
self.start = start
self.stop = stop
def yield_lines_from_file(file_path):
with open(file_path, 'rb') as f:
for line in f:
try:
line = line.decode('utf-8')
except UnicodeDecodeError:
line = line.decode('latin-1').encode('utf-8').decode('utf-8')
line = line.strip()
yield line
f.close()
def yield_lines_from_doc(doc_text):
for line in doc_text.split("\n"):
yield line.strip()
def best_candidates(sentence):
"""
:param sentence: line read from input file
:return: a Candidate iterator
"""
if '(' in sentence:
# Check some things first
if sentence.count('(') != sentence.count(')'):
raise ValueError("Unbalanced parentheses: {}".format(sentence))
if sentence.find('(') > sentence.find(')'):
raise ValueError("First parentheses is right: {}".format(sentence))
closeindex = -1
while 1:
# Look for open parenthesis
openindex = sentence.find('(', closeindex + 1)
if openindex == -1: break
# Look for closing parentheses
closeindex = openindex + 1
open = 1
skip = False
while open:
try:
char = sentence[closeindex]
except IndexError:
# We found an opening bracket but no associated closing bracket
# Skip the opening bracket
skip = True
break
if char == '(':
open += 1
elif char in [')', ';', ':']:
open -= 1
closeindex += 1
if skip:
closeindex = openindex + 1
continue
# Output if conditions are met
start = openindex + 1
stop = closeindex - 1
candidate = sentence[start:stop]
# Take into account whitespace that should be removed
start = start + len(candidate) - len(candidate.lstrip())
stop = stop - len(candidate) + len(candidate.rstrip())
candidate = sentence[start:stop]
if conditions(candidate):
new_candidate = Candidate(candidate)
new_candidate.set_position(start, stop)
yield new_candidate
def conditions(candidate):
"""
Based on Schwartz&Hearst
2 <= len(str) <= 10
len(tokens) <= 2
re.search('\p{L}', str)
str[0].isalnum()
and extra:
if it matches (\p{L}\.?\s?){2,}
it is a good candidate.
:param candidate: candidate abbreviation
:return: True if this is a good candidate
"""
viable = True
if regex.match('(\p{L}\.?\s?){2,}', candidate.lstrip()):
viable = True
if len(candidate) < 2 or len(candidate) > 10:
viable = False
if len(candidate.split()) > 2:
viable = False
if not regex.search('\p{L}', candidate):
viable = False
if not candidate[0].isalnum():
viable = False
return viable
def get_definition(candidate, sentence):
"""
Takes a candidate and a sentence and returns the definition candidate.
The definintion candidate is the set of tokens (in front of the candidate)
that starts with a token starting with the first character of the candidate
:param candidate: candidate abbreviation
:param sentence: current sentence (single line from input file)
:return: candidate definition for this abbreviation
"""
# Take the tokens in front of the candidate
tokens = regex.split(r'[\s\-]+', sentence[:candidate.start - 2].lower())
#print(tokens)
# the char that we are looking for
key = candidate[0].lower()
# Count the number of tokens that start with the same character as the candidate
# print(tokens)
firstchars = [t[0] for t in tokens]
# print(firstchars)
definition_freq = firstchars.count(key)
candidate_freq = candidate.lower().count(key)
# Look for the list of tokens in front of candidate that
# have a sufficient number of tokens starting with key
if candidate_freq <= definition_freq:
# we should at least have a good number of starts
count = 0
start = 0
startindex = len(firstchars) - 1
while count < candidate_freq:
if abs(start) > len(firstchars):
raise ValueError("candiate {} not found".format(candidate))
start -= 1
# Look up key in the definition
try:
startindex = firstchars.index(key, len(firstchars) + start)
except ValueError:
pass
# Count the number of keys in definition
count = firstchars[startindex:].count(key)
# We found enough keys in the definition so return the definition as a definition candidate
start = len(' '.join(tokens[:startindex]))
stop = candidate.start - 1
candidate = sentence[start:stop]
# Remove whitespace
start = start + len(candidate) - len(candidate.lstrip())
stop = stop - len(candidate) + len(candidate.rstrip())
candidate = sentence[start:stop]
new_candidate = Candidate(candidate)
new_candidate.set_position(start, stop)
#print('new_candidate:')
#print(new_candidate,start,stop)
return new_candidate
else:
raise ValueError('There are less keys in the tokens in front of candidate than there are in the candidate')
def select_definition(definition, abbrev):
"""
Takes a definition candidate and an abbreviation candidate
and returns True if the chars in the abbreviation occur in the definition
Based on
A simple algorithm for identifying abbreviation definitions in biomedical texts, Schwartz & Hearst
:param definition: candidate definition
:param abbrev: candidate abbreviation
:return:
"""
if len(definition) < len(abbrev):
raise ValueError('Abbreviation is longer than definition')
if abbrev in definition.split():
raise ValueError('Abbreviation is full word of definition')
sindex = -1
lindex = -1
while 1:
try:
longchar = definition[lindex].lower()
except IndexError:
raise
shortchar = abbrev[sindex].lower()
if not shortchar.isalnum():
sindex -= 1
if sindex == -1 * len(abbrev):
if shortchar == longchar:
if lindex == -1 * len(definition) or not definition[lindex - 1].isalnum():
break
else:
lindex -= 1
else:
lindex -= 1
if lindex == -1 * (len(definition) + 1):
raise ValueError("definition {} was not found in {}".format(abbrev, definition))
else:
if shortchar == longchar:
sindex -= 1
lindex -= 1
else:
lindex -= 1
# print('lindex:',lindex,len(definition),definition[lindex:len(definition)])
new_candidate = Candidate(definition[lindex:len(definition)])
new_candidate.set_position(definition.start+lindex+len(definition), definition.stop)
definition = new_candidate
tokens = len(definition.split())
length = len(abbrev)
if tokens > min([length + 5, length * 2]):
raise ValueError("did not meet min(|A|+5, |A|*2) constraint")
# Do not return definitions that contain unbalanced parentheses
if definition.count('(') != definition.count(')'):
raise ValueError("Unbalanced parentheses not allowed in a definition")
# print('select:')
# print(definition,definition.start, definition.stop)
new_definition_dict={'definition':definition,'start':definition.start,'stop':definition.stop}
return new_definition_dict
def extract_abbreviation_definition_pairs(file_path=None, doc_text=None):
abbrev_map = [] #[{definition,start,stop,abbre}]
abbr_full_dict={} #{abbre:(fullname_start,fullname_stop)}
fullloc_abbr_dict={} #{"fullname_s fullname_e":abbr}
omit = 0
written = 0
if file_path:
sentence_iterator = enumerate(yield_lines_from_file(file_path))
elif doc_text:
sentence_iterator = enumerate(yield_lines_from_doc(doc_text))
else:
return abbrev_map
for i, sentence in sentence_iterator:
#print(sentence)
try:
for candidate in best_candidates(sentence):
#print(candidate)
try:
#print('begin get definition')
definition = get_definition(candidate, sentence)
#print('get_definition:')
#print(definition)
except (ValueError, IndexError) as e:
#log.debug("{} Omitting candidate {}. Reason: {}".format(i, candidate, e.args[0]))
omit += 1
else:
try:
definition_dict = select_definition(definition, candidate)
except (ValueError, IndexError) as e:
#log.debug("{} Omitting definition {} for candidate {}. Reason: {}".format(i, definition_dict, candidate, e.args[0]))
omit += 1
else:
definition_dict['abbre']=candidate
abbrev_map.append(definition_dict)
abbr_full_dict[definition_dict['abbre']]=(definition_dict['start'],definition_dict['stop'])
fullloc_abbr_dict[str(definition_dict['start'])+' '+str(definition_dict['stop'])]=definition_dict['abbre']
written += 1
except (ValueError, IndexError) as e:
log.debug("{} Error processing sentence {}: {}".format(i, sentence, e.args[0]))
log.debug("{} abbreviations detected and kept ({} omitted)".format(written, omit))
return abbrev_map,abbr_full_dict,fullloc_abbr_dict
def postprocess_abbr(ner_result,ori_text): #ner_result {'entity_s entity_e':[eles]}
final_result=[]
if len(ner_result)==0:
return {}
# abbr recognition
abbr_list, abbr_full_dict,fullloc_abbr_dict=extract_abbreviation_definition_pairs(doc_text=ori_text)
# print(abbr_list)
#print(abbr_full_dict)
# print(fullloc_abbr_dict)
#ner loc
ner_loc_result={}
for ele in ner_result.keys():
# ner_loc_result[ner_result[ele][0]+' '+ner_result[ele][1]]=ner_result[ele]
ner_loc_result[ner_result[ele][1]]=ner_result[ele]
# remove the wrong abbr, add miss abbr
for entity_loc in ner_result.keys():
if (ner_result[entity_loc][-1]!='CellLine') and (ner_result[entity_loc][2] in abbr_full_dict.keys()) : #the entity is abbr
#use the fullname entity type
fullname_loc_e=str(abbr_full_dict[ner_result[entity_loc][2]][1])
if fullname_loc_e in ner_loc_result.keys(): #fullname is entity
final_result.append([ner_result[entity_loc][0], ner_result[entity_loc][1],ner_result[entity_loc][2],ner_loc_result[fullname_loc_e][-1]])
# # fullname_loc=str(abbr_full_dict[ner_result[entity_loc][2]][0])+' '+str(abbr_full_dict[ner_result[entity_loc][2]][1])
# fullname_loc_e=str(abbr_full_dict[ner_result[entity_loc][2]][1])
# if (ner_result[entity_loc][-1]=='Gene') or (ner_result[entity_loc][-1]=='FamilyName'): #gene keep original entity type
# if fullname_loc_e in ner_loc_result.keys(): #fullname is entity
# final_result.append(ner_result[entity_loc])
# # elif fullname_loc_e in ner_loc_result.keys(): #fullname is entity
# # final_result.append(ner_result[entity_loc])
# else: # no-gene use the fullname entity type
# if fullname_loc_e in ner_loc_result.keys(): #fullname is entity
# final_result.append([ner_result[entity_loc][0], ner_result[entity_loc][1],ner_result[entity_loc][2],ner_loc_result[fullname_loc_e][-1]])
# # elif fullname_loc_e in ner_loc_result.keys(): #fullname is entity
# # final_result.append([ner_result[entity_loc][0], ner_result[entity_loc][1],ner_result[entity_loc][2],ner_loc_result[fullname_loc_e][-1]])
elif entity_loc in fullloc_abbr_dict.keys(): #the entity is fullname
abbr_loc_s=ori_text.find(fullloc_abbr_dict[entity_loc],int(ner_result[entity_loc][1]))
final_result.append(ner_result[entity_loc])
if abbr_loc_s>=0:
abbr_loc_e=abbr_loc_s+len(fullloc_abbr_dict[entity_loc])
abbr_loc=str(abbr_loc_s)+' '+str(abbr_loc_e)
# print(abbr_loc,fullloc_abbr_dict[entity_loc])
if abbr_loc not in ner_result.keys():#add abbr
final_result.append([str(abbr_loc_s),str(abbr_loc_e),ori_text[abbr_loc_s:abbr_loc_e],ner_result[entity_loc][-1]])
else:
#if entity is only Punctuation
if len(ner_result[entity_loc][2])==1 and (not ner_result[entity_loc][2].isalpha()):
pass
# print(ner_result[entity_loc])
else:
final_result.append(ner_result[entity_loc])
#print(final_result)
return final_result
def entity_consistency(ner_result,ori_text): #ner_result=[]
final_result={}
entity_loc_set=set()
entity_type={} #{entity:{type1:num,type2:num}}
for segs in ner_result:
entity_loc_set.add(segs[0]+' '+segs[1])
final_result['\t'.join(segs)]=[int(segs[0]),int(segs[1])]
if len(segs[2])>1:
if segs[2].isupper():#entity is all supper abbr
if segs[2] not in entity_type.keys():
entity_type[segs[2]]={segs[-1]:1}
else:
if segs[-1] in entity_type[segs[2]]:
entity_type[segs[2]][segs[-1]]+=1
else:
entity_type[segs[2]][segs[-1]]=1
else: #not abbr
if segs[2].lower() not in entity_type.keys():
entity_type[segs[2].lower()]={segs[-1]:1}
else:
if segs[-1] in entity_type[segs[2].lower()]:
entity_type[segs[2].lower()][segs[-1]]+=1
else:
entity_type[segs[2].lower()][segs[-1]]=1
# print(entity_type)
# print('..........')
entity_type_major={}
for ele in entity_type.keys():
entity_type_major[ele]=max(zip(entity_type[ele].values(), entity_type[ele].keys()))[1]
# print(entity_type_major)
#find miss entity
for entity_text in entity_type_major.keys():
if entity_text.isupper():#entity is all supper abbr
new_text=ori_text
else:
new_text=ori_text.lower()
ent_eid=0
while new_text.find(entity_text,ent_eid)>=0:
ent_sid=new_text.find(entity_text,ent_eid)
ent_eid=ent_sid+len(entity_text)
entity_loc=str(ent_sid)+' '+str(ent_eid)
# print(abbr_sid,abbr_eid)
if entity_loc not in entity_loc_set:
if ent_sid>0 and ent_eid<len(new_text):
if new_text[ent_sid-1].isalnum()==False and new_text[ent_eid].isalnum()==False:
final_result[str(ent_sid)+'\t'+str(ent_eid)+'\t'+ori_text[ent_sid:ent_eid]+'\t'+entity_type_major[entity_text]]=[ent_sid,ent_eid]
entity_loc_set.add(entity_loc)
elif ent_sid==0 and ent_eid<len(new_text):
if new_text[ent_eid].isalnum()==False:
final_result[str(ent_sid)+'\t'+str(ent_eid)+'\t'+ori_text[ent_sid:ent_eid]+'\t'+entity_type_major[entity_text]]=[ent_sid,ent_eid]
entity_loc_set.add(entity_loc)
elif ent_sid>0 and ent_eid==len(new_text):
if new_text[ent_sid-1].isalnum()==False :
final_result[str(ent_sid)+'\t'+str(ent_eid)+'\t'+ori_text[ent_sid:ent_eid]+'\t'+entity_type_major[entity_text]]=[ent_sid,ent_eid]
entity_loc_set.add(entity_loc)
if len(final_result)!=len(ner_result):#add new entity, sort , remover overloppling
final_result=sorted(final_result.items(), key=lambda kv:(kv[1]), reverse=False)
mention_list=[]
for ele in final_result:
mention_list.append(ele[0].split('\t'))
final_ner_result=combine_overlap(mention_list)
else:
final_ner_result=ner_result
return final_ner_result
def combine_overlap(mention_list):
entity_list=[]
if len(mention_list)>2:
first_entity=mention_list[0]
nest_list=[first_entity]
max_eid=int(first_entity[1])
for i in range(1,len(mention_list)):
segs=mention_list[i]
if int(segs[0])>= max_eid:
if len(nest_list)==1:
entity_list.append(nest_list[0])
nest_list=[]
nest_list.append(segs)
if int(segs[1])>max_eid:
max_eid=int(segs[1])
else:
tem=find_max_entity(nest_list)#find max entity
entity_list.append(tem)
nest_list=[]
nest_list.append(segs)
if int(segs[1])>max_eid:
max_eid=int(segs[1])
else:
nest_list.append(segs)
if int(segs[1])>max_eid:
max_eid=int(segs[1])
if nest_list!=[]:
if len(nest_list)==1:
entity_list.append(nest_list[0])
else:
tem=find_max_entity(nest_list)#find max entity
entity_list.append(tem)
else:
entity_list=mention_list
return entity_list
def find_max_entity(nest_list):
max_len=0
max_entity=[]
for i in range(0, len(nest_list)):
length=int(nest_list[i][1])-int(nest_list[i][0])
if length>max_len:
max_len=length
max_entity=nest_list[i]
return max_entity
if __name__ == '__main__':
path='//panfs/pan1/bionlplab/luol2/PubTator3/example/post-out/'
fin=open(path+'PubmedBERT-CRF-AIO_ALL.test_preds','r',encoding='utf-8')
all_in=fin.read().strip().split('\n\n')
fout=open(path+'PubmedBERT-CRF-AIO_ALL-post4.test_preds','w',encoding='utf-8')
for doc in all_in:
lines=doc.split('\n')
pmid=lines[0].split('|t|')[0]
ori_text=lines[0].split('|t|')[1]+' '+lines[1].split('|a|')[1]
ner_result={}
for i in range(2,len(lines)):
seg=lines[i].split('\t')
ner_result[seg[1]+' '+seg[2]]=seg[1:]
# abbr recognition
final_ner=postprocess_abbr(ner_result,ori_text)
#entity consistence
final_ner=entity_consistency(final_ner,ori_text)
# final_result=sorted(final_ner.items(), key=lambda kv:(kv[1]), reverse=False)
fout.write(lines[0]+'\n'+lines[1]+'\n')
for ele in final_ner:
fout.write(pmid+'\t'+'\t'.join(ele)+'\n')
fout.write('\n')
fout.close()
# sys.exit()
|