m7-1.58bit-6x70m / README.md
gate369's picture
Update README.md
402b8c0 verified
|
raw
history blame
2.06 kB
metadata
license: apache-2.0
tags:
  - moe
  - frankenmoe
  - merge
  - mergekit
  - lazymergekit
  - liminerity/Bitnet-M7-70m
base_model:
  - liminerity/Bitnet-M7-70m
  - liminerity/Bitnet-M7-70m
  - liminerity/Bitnet-M7-70m
  - liminerity/Bitnet-M7-70m
  - liminerity/Bitnet-M7-70m

m7-1.58bit-6x70m

m7-1.58bit-6x70m is a Mixture of Experts (MoE) made with the following models using LazyMergekit:

🧩 Configuration

base_model: liminerity/Bitnet-M7-70m
experts:
  - source_model: liminerity/Bitnet-M7-70m
    positive_prompts: ["what"]
  - source_model: liminerity/Bitnet-M7-70m
    positive_prompts: ["why is"]
  - source_model: liminerity/Bitnet-M7-70m
    positive_prompts: ["who is"]
  - source_model: liminerity/Bitnet-M7-70m
    positive_prompts: ["how come"]
  - source_model: liminerity/Bitnet-M7-70m
    positive_prompts: ["why so"]

💻 Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "liminerity/NeuralPipe-7B-slerp"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])