metadata
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- liminerity/Bitnet-M7-70m
base_model:
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
m7-1.58bit-6x70m
m7-1.58bit-6x70m is a Mixture of Experts (MoE) made with the following models using LazyMergekit:
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
- liminerity/Bitnet-M7-70m
🧩 Configuration
base_model: liminerity/Bitnet-M7-70m
experts:
- source_model: liminerity/Bitnet-M7-70m
positive_prompts: ["what"]
- source_model: liminerity/Bitnet-M7-70m
positive_prompts: ["why is"]
- source_model: liminerity/Bitnet-M7-70m
positive_prompts: ["who is"]
- source_model: liminerity/Bitnet-M7-70m
positive_prompts: ["how come"]
- source_model: liminerity/Bitnet-M7-70m
positive_prompts: ["why so"]
💻 Usage
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "liminerity/NeuralPipe-7B-slerp"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])