File size: 2,499 Bytes
1289229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model_34
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_billsum_model_34

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6615
- Rouge1: 0.9649
- Rouge2: 0.8639
- Rougel: 0.9148
- Rougelsum: 0.916
- Gen Len: 4.7917

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 12   | 2.2768          | 0.4083 | 0.2813 | 0.3855 | 0.3853    | 17.3333 |
| No log        | 2.0   | 24   | 1.7504          | 0.4318 | 0.2948 | 0.3978 | 0.3966    | 16.6042 |
| No log        | 3.0   | 36   | 1.2490          | 0.4721 | 0.3506 | 0.4443 | 0.4447    | 15.3542 |
| No log        | 4.0   | 48   | 0.9124          | 0.7673 | 0.6558 | 0.7251 | 0.7253    | 9.0833  |
| No log        | 5.0   | 60   | 0.7653          | 0.9289 | 0.8292 | 0.8817 | 0.8823    | 5.7292  |
| No log        | 6.0   | 72   | 0.7176          | 0.9649 | 0.8639 | 0.9148 | 0.916     | 4.7917  |
| No log        | 7.0   | 84   | 0.6921          | 0.9649 | 0.8639 | 0.9148 | 0.916     | 4.7917  |
| No log        | 8.0   | 96   | 0.6765          | 0.9649 | 0.8639 | 0.9148 | 0.916     | 4.7917  |
| No log        | 9.0   | 108  | 0.6655          | 0.9649 | 0.8639 | 0.9148 | 0.916     | 4.7917  |
| No log        | 10.0  | 120  | 0.6615          | 0.9649 | 0.8639 | 0.9148 | 0.916     | 4.7917  |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1