|
--- |
|
language: protein |
|
tags: |
|
- protein |
|
datasets: |
|
- uniref-100 |
|
--- |
|
|
|
# RITA-L |
|
|
|
RITA is a family of autoregressive protein models, developed in collaboration between Lighton, Harvard and Oxford. |
|
|
|
|
|
|
|
Model | #Params | d_model | layers | lm loss uniref-100 |
|
--- | --- | --- | --- | --- | |
|
[Small](https://huggingface.co/lightonai/RITA_s) | 85M | 768 | 12 | 2.31 |
|
[Medium](https://huggingface.co/lightonai/RITA_m) | 300M | 1024 | 24 | 2.01 |
|
[**Large**](https://huggingface.co/lightonai/RITA_l)| 680M | 1536 | 24 | 1.82 |
|
[XLarge](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70 |
|
|
|
|
|
|
|
# Usage |
|
|
|
Instantiate a model like so: |
|
|
|
from transformers import AutoModel, AutoModelForCausalLM |
|
model = AutoModelForCausalLM.from_pretrained("Seledorn/RITA_l, trust_remote_code=True") |
|
tokenizer = AutoTokenizer.from_pretrained("Seledorn/RITA_l") |
|
|
|
for generation use we support pipelines: |
|
|
|
|
|
rita_gen = pipeline('text-generation', model=model, tokenizer = tokenizer) |
|
sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2) |
|
for seq in sequences: |
|
print(f"seq: {seq['generated_text'].replace(' ', '')}") |
|
|
|
|