RITA_l / README.md
DanielHesslow's picture
Update README.md
314beba
|
raw
history blame
1.21 kB
---
language: protein
tags:
- protein
datasets:
- uniref-100
---
# RITA-L
RITA is a family of autoregressive protein models, developed in collaboration between Lighton, Harvard and Oxford.
Model | #Params | d_model | layers | lm loss uniref-100
--- | --- | --- | --- | --- |
[Small](https://huggingface.co/lightonai/RITA_s) | 85M | 768 | 12 | 2.31
[Medium](https://huggingface.co/lightonai/RITA_m) | 300M | 1024 | 24 | 2.01
[**Large**](https://huggingface.co/lightonai/RITA_l)| 680M | 1536 | 24 | 1.82
[XLarge](https://huggingface.co/lightonai/RITA_xl)| 1.2B | 2048 | 24 | 1.70
# Usage
Instantiate a model like so:
from transformers import AutoModel, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("Seledorn/RITA_l, trust_remote_code=True")
tokenizer = AutoTokenizer.from_pretrained("Seledorn/RITA_l")
for generation use we support pipelines:
rita_gen = pipeline('text-generation', model=model, tokenizer = tokenizer)
sequences = rita_gen("MAB", max_length=20, do_sample=True, top_k=950, repetition_penalty=1.2, num_return_sequences=2, eos_token_id=2)
for seq in sequences:
print(f"seq: {seq['generated_text'].replace(' ', '')}")