File size: 8,281 Bytes
cbf7f13
e5de2d3
 
 
cbf7f13
e5de2d3
 
5724a7f
2b27ac5
e5de2d3
5724a7f
 
 
 
 
 
 
 
 
 
 
 
 
626bc84
aa103c4
9a23d52
 
cbf7f13
 
 
637fe0c
cbf7f13
 
 
 
626bc84
 
3beaf73
cbf7f13
76c4d1f
cbf7f13
626bc84
 
2c4a267
cbf7f13
 
 
8ad67c6
2c4a267
76c4d1f
cbf7f13
e5de2d3
 
8aa27c7
 
529e458
8aa27c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637fe0c
8aa27c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76c4d1f
 
8aa27c7
 
 
 
76c4d1f
8aa27c7
 
 
 
 
 
 
 
 
 
 
 
 
 
76c4d1f
8aa27c7
 
 
 
 
 
 
 
 
 
 
 
 
 
2c4a267
8aa27c7
637fe0c
76c4d1f
8aa27c7
2c4a267
8aa27c7
 
 
76c4d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637fe0c
76c4d1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626bc84
76c4d1f
8aa27c7
 
 
cbf7f13
 
 
 
 
 
626bc84
0d2ad8d
9a23d52
0d2ad8d
ebc9c4f
2c4a267
 
cbf7f13
637fe0c
 
 
 
cbf7f13
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
language: el
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: XLSR Wav2Vec2 Greek by Lighteternal
  results:
  - task: 
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice el
      type: common_voice
      args: el 
    metrics:
       - name: Test WER
         type: wer
         value: 10.497628
       - name: Test CER
         type: cer
         value: 2.875260
---

# Greek (el) version of the XLSR-Wav2Vec2 automatic speech recognition (ASR) model
### By the Hellenic Army Academy and the Technical University of Crete


* language: el
* licence: apache-2.0
* dataset: CommonVoice (EL), 364MB: https://commonvoice.mozilla.org/el/datasets + CSS10 (EL), 1.22GB: https://github.com/Kyubyong/css10
* model: XLSR-Wav2Vec2, trained for 50 epochs
* metrics: Word Error Rate (WER)

## Model description

UPDATE: We repeated the fine-tuning process using an additional 1.22GB dataset from CSS10.

Wav2Vec2 is a pretrained model for Automatic Speech Recognition (ASR) and was released in September 2020 by Alexei Baevski, Michael Auli, and Alex Conneau. Soon after the superior performance of Wav2Vec2 was demonstrated on the English ASR dataset LibriSpeech, Facebook AI presented XLSR-Wav2Vec2. XLSR stands for cross-lingual speech representations and refers to XLSR-Wav2Vec2`s ability to learn speech representations that are useful across multiple languages.

Similar to Wav2Vec2, XLSR-Wav2Vec2 learns powerful speech representations from hundreds of thousands of hours of speech in more than 50 languages of unlabeled speech. Similar, to BERT's masked language modeling, the model learns contextualized speech representations by randomly masking feature vectors before passing them to a transformer network.

This model was trained on Greek CommonVoice speech data (364MB) for 60 epochs on a single NVIDIA RTX 3080, for aprox. 8hrs.

## How to use for inference:

For live demo, make sure that speech files are sampled at 16kHz.

Instructions to test on CommonVoice extracts are provided in the ASR_Inference.ipynb. Snippet also available below: 

```python
#!/usr/bin/env python
# coding: utf-8

# Loading dependencies and defining preprocessing functions 

from transformers import Wav2Vec2ForCTC
from transformers import Wav2Vec2Processor
from datasets import load_dataset, load_metric
import re
import torchaudio
import librosa
import numpy as np
from datasets import load_dataset, load_metric
import torch

chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�]'

def remove_special_characters(batch):
    batch["text"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
    return batch

def speech_file_to_array_fn(batch):
    speech_array, sampling_rate = torchaudio.load(batch["path"])
    batch["speech"] = speech_array[0].numpy()
    batch["sampling_rate"] = sampling_rate
    batch["target_text"] = batch["text"]
    return batch

def resample(batch):
    batch["speech"] = librosa.resample(np.asarray(batch["speech"]), 48_000, 16_000)
    batch["sampling_rate"] = 16_000
    return batch

def prepare_dataset(batch):
    # check that all files have the correct sampling rate
    assert (
        len(set(batch["sampling_rate"])) == 1
    ), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."

    batch["input_values"] = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0]).input_values
    
    with processor.as_target_processor():
        batch["labels"] = processor(batch["target_text"]).input_ids
    return batch


# Loading model and dataset processor

model = Wav2Vec2ForCTC.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek")


# Preparing speech dataset to be suitable for inference

common_voice_test = load_dataset("common_voice", "el", split="test")

common_voice_test = common_voice_test.remove_columns(["accent", "age", "client_id", "down_votes", "gender", "locale", "segment", "up_votes"])

common_voice_test = common_voice_test.map(remove_special_characters, remove_columns=["sentence"])

common_voice_test = common_voice_test.map(speech_file_to_array_fn, remove_columns=common_voice_test.column_names)

common_voice_test = common_voice_test.map(resample, num_proc=8)

common_voice_test = common_voice_test.map(prepare_dataset, remove_columns=common_voice_test.column_names, batch_size=8, num_proc=8, batched=True)


# Loading test dataset

common_voice_test_transcription = load_dataset("common_voice", "el", split="test")


#Performing inference on a random sample. Change the "example" value to try inference on different CommonVoice extracts

example = 123

input_dict = processor(common_voice_test["input_values"][example], return_tensors="pt", sampling_rate=16_000, padding=True)

logits = model(input_dict.input_values.to("cuda")).logits

pred_ids = torch.argmax(logits, dim=-1)

print("Prediction:")
print(processor.decode(pred_ids[0]))
# πού θέλεις να πάμε ρώτησε φοβισμένα ο βασιλιάς

print("\\\\
Reference:")
print(common_voice_test_transcription["sentence"][example].lower())
# πού θέλεις να πάμε; ρώτησε φοβισμένα ο βασιλιάς.

```

## Evaluation

The model can be evaluated as follows on the Greek test data of Common Voice. 


```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re

test_dataset = load_dataset("common_voice", "el", split="test") 
wer = load_metric("wer")

processor = Wav2Vec2Processor.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek") 
model = Wav2Vec2ForCTC.from_pretrained("lighteternal/wav2vec2-large-xlsr-53-greek")
model.to("cuda")

chars_to_ignore_regex = '[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)

# Preprocessing the datasets.
# We need to read the aduio files as arrays

def speech_file_to_array_fn(batch):
  batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
  speech_array, sampling_rate = torchaudio.load(batch["path"])
  batch["speech"] = resampler(speech_array).squeeze().numpy()
  return batch
  
test_dataset = test_dataset.map(speech_file_to_array_fn)

# Preprocessing the datasets.
# We need to read the aduio files as arrays

def evaluate(batch):
  inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
  with torch.no_grad():
    logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
  pred_ids = torch.argmax(logits, dim=-1)
  batch["pred_strings"] = processor.batch_decode(pred_ids)
  return batch

result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```

**Test Result**: 10.497628 % 

### How to use for training:

Instructions and code to replicate the process are provided in the Fine_Tune_XLSR_Wav2Vec2_on_Greek_ASR_with_🤗_Transformers.ipynb notebook.


## Metrics

| Metric      | Value |
| ----------- | ----------- |
| Training Loss | 0.0545 |
| Validation Loss | 0.1661 |
| CER on CommonVoice Test (%) *| 2.8753 |
| WER on CommonVoice Test (%) *| 10.4976 |
* Reference transcripts were lower-cased and striped of punctuation and special characters.



### Acknowledgement

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)


Based on the tutorial of Patrick von Platen: https://huggingface.co/blog/fine-tune-xlsr-wav2vec2
Original colab notebook here: https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_Tune_XLSR_Wav2Vec2_on_Turkish_ASR_with_%F0%9F%A4%97_Transformers.ipynb#scrollTo=V7YOT2mnUiea