metadata
license: apache-2.0
license_name: tongyi-qianwen-license-agreement
license_link: >-
https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
datasets:
- oscar-corpus/OSCAR-2301
- mc4
language:
- ja
TinyLlama + Japanese pre-training (50,004 steps)
How to use
Hugggingface
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("lightblue/karasu-1.1B")
model = AutoModelForCausalLM.from_pretrained("lightblue/karasu-1.1B", torch_dtype=torch.bfloat16, device_map="auto")
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
pipe(prompt, max_new_tokens=100, do_sample=False, temperature=0.0, return_full_text=False)
VLLM
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
llm = LLM(model="lightblue/karasu-1.1B")
messages = [{"role": "system", "content": "あなたはAIアシスタントです。"}]
messages.append({"role": "user", "content": "イギリスの首相は誰ですか?"})
prompt = llm.llm_engine.tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
prompts = [prompt]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Base checkpoint
TinyLlama/TinyLlama-1.1B-intermediate-step-715k-1.5T
Training datasets (total ~3B)
A filtered then sampled set from
- OSCAR (Japanese)
- mC4 (Japanese)
Developed by
Engineers
Peter Devine
Sho Higuchi
Advisors
Yuuki Yamanaka
Atom Sonoda
Project manager
Shunichi Taniguchi
Tomioka Wataru
Dataset evaluator
Renju Aoki