Text Generation
Transformers
Safetensors
jamba
conversational
custom_code
Inference Endpoints
ptrdvn's picture
Update README.md
cd6703a verified
|
raw
history blame
7.25 kB
metadata
library_name: transformers
tags: []

Model Overview

This model was trained as a small-scale experiment to determine how easy it is to fine-tune ai21labs/Jamba-v0.1 to work as a chatbot.

The aim of this experiment was to find how intelligently and reliably Jamba can chat in both English and other languages if only QLoRA finetuned for a few hours.

Initial subjective testing has shown that this model can chat reasonably well in both English and Japanese, so feel free to give it a try!

Model Details

  • Model type: Joint Attention and Mamba (Jamba)
  • License: Apache 2.0
  • Context length: 256K
  • Knowledge cutoff date: March 5, 2024

How to use

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("kinokokoro/jamba_airoboros3.2_sharegpt4",
                                             trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("kinokokoro/jamba_airoboros3.2_sharegpt4")

input_text = """<|im_start|>system 
You are GPT-4, a helpful assistant.
<|im_end|> 
<|im_start|>user 
ๆœ€่ฟ‘ใ€้‹ๅ‹•ใ™ใ‚Œใฐใ€ใ™ใใซใ‚ใฃใกใ‚ƒใใฃใกใ‚ƒๆฑ—ใ‹ใ„ใกใ‚ƒใ†ใ‚“ใ ใ‘ใฉใ€ใฉใ†ใ—ใŸใ‚‰ใ„ใ„ใงใ™ใ‹๏ผŸ
<|im_end|> 
<|im_start|>assistant 
"""

input_ids = tokenizer(input_text, return_tensors='pt').to(model.device)["input_ids"]

outputs = model.generate(input_ids, max_new_tokens=256, temperature=0.0)\

print(tokenizer.batch_decode([outputs[0][len(input_ids[0]):]]))
# ['ๆฑ—ใŒๅ‡บใ‚‹ใ“ใจใฏใ€้‹ๅ‹•ใ‚’ใ™ใ‚‹ใจใใซไฝ“ๆธฉใŒไธŠใŒใ‚Šใ€ไฝ“ๅ†…ใฎ็†ฑใ‚’ๅค–้ƒจใซๆ”พๅ‡บใ™ใ‚‹ใŸใ‚ใฎ่‡ช็„ถใชใƒกใ‚ซใƒ‹ใ‚บใƒ ใงใ™ใ€‚ๆฑ—ใŒๅ‡บใ‚‹ใ“ใจใŒๅคšใ„ใ“ใจใฏใ€ไธ€่ˆฌ็š„ใซใฏใ€ไฝ“ใฎๆธฉๅบฆ่ชฟ็ฏ€ๆฉŸ่ƒฝใŒๅƒใ„ใฆใ„ใ‚‹ใ“ใจใ‚’ๆ„ๅ‘ณใ—ใพใ™ใ€‚ใ—ใ‹ใ—ใ€ๆฑ—ใŒๅ‡บใ‚‹ใ“ใจใŒๅคšใ™ใŽใ‚‹ใจใ€ไธๅฟซๆ„Ÿใ‚„ๆฑ—็—‡ใชใฉใฎๅ•้กŒใŒ็™บ็”Ÿใ™ใ‚‹ใ“ใจใŒใ‚ใ‚Šใพใ™ใ€‚ไปฅไธ‹ใซใ€ๆฑ—ใŒๅ‡บใ‚‹ใ“ใจใŒๅคšใ„ๅ ดๅˆใฎๅฏพ็ญ–ใ‚’็ดนไป‹ใ—ใพใ™ใ€‚\n\n1. ้ฉๅˆ‡ใชๆœ่ฃ…ใ‚’้ธใถ: ๆฑ—ใŒๅ‡บใ‚‹ใ“ใจใŒๅคšใ„ๅ ดๅˆใ€่ปฝ้‡ใง้€ๆนฟๆ€งใฎ้ซ˜ใ„ๆœใ‚’้ธใถใ“ใจใŒ้‡่ฆใงใ™ใ€‚ใ“ใ‚Œใซใ‚ˆใ‚Šใ€ๆฑ—ใŒไฝ“ใ‹ใ‚‰ๅค–้ƒจใซ๏ฟฝ']

Initial testing results

Training details

The model was trained on 2 open source datasets (one multilingual) for one epoch on a A100 (80GB) x 4 environment for 3 hours.

Training data

A ~59K example dataset of curated LLM tasks in English, primarily generated with GPT-4. This dataset has been used by some of the best performing open source LLMs in the world (e.g. jondurbin/bagel-7b-v0.4, NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO) and contains a wide variety of tasks, so we hypothesized that this would lead to a multi-talented, accurate model. For this reason we chose this dataset was chosen for the bulk of our training data.

Note: Each element in jondurbin/airoboros-3.2 already contains a system message.

A ~6K example dataset of multilingual multi-turn chats between users and GPT-4. While jondurbin/airoboros-3.2 has deilvered good results for models previously, it sadly contains no (or seemingly very little) multilingual data. We are a Japanese AI company, so require an LLM to be able to output in Japanese too. Hence we also selected a small, seemingly high quality dataset of GPT-4 responses in many languages from the ShareGPT dataset. We chose to only select the GPT-4 responses as we wanted to keep our dataset as small and high quality as possible to maximise the efficiency of our training.

Note: openchat/openchat_sharegpt4_dataset does not contain system messages, so we added 'You are GPT-4, a helpful assistant.' as our system message.

Data preparation code
import os
import pandas as pd
from datasets import load_dataset, Dataset, concatenate_datasets

os.environ['HF_HOME'] = "/workspace/hf_home"
os.environ['HF_HUB_ENABLE_HF_TRANSFER'] = "1"

boros_dataset = load_dataset("jondurbin/airoboros-3.2", split='train')

gpt4_df = pd.read_json("https://huggingface.co/datasets/openchat/openchat_sharegpt4_dataset/resolve/main/sharegpt_gpt4.json?download=true")
gpt4_df["conversations"] = gpt4_df["items"].apply(lambda x: [{'from': 'system', 'value': 'You are GPT-4, a helpful assistant.'}] + x)

gpt4_dataset = Dataset.from_pandas(gpt4_df[["conversations"]])

dataset = concatenate_datasets([gpt4_dataset, boros_dataset]).shuffle()

dataset.select_columns(["conversations"]).to_json("/workspace/airoboros-3.2_plus_openchat_sharegpt4.json")

Training

The Jamba-v0.1 base model was trained for roughly 3 hours in a A100 (80GB) x 4 environment on the Azure cloud (Standard_NC96ads_A100_v4).

Our training harness was Axolotl, with the following config as our training parameters:

Training config
base_model: ai21labs/Jamba-v0.1
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: /workspace/airoboros-3.2_plus_openchat_sharegpt4.json
    ds_type: json
    type: sharegpt
    conversation: chatml
dataset_prepared_path:
val_set_size: 0.01
output_dir: ./airoboros-3.2_plus_openchat_sharegpt4_one_epoch

sequence_len: 6000
sample_packing: true
pad_to_sequence_len: false
eval_sample_packing: true

use_wandb: true
wandb_project: axolotl
wandb_entity: peterd
wandb_name: airoboros-3.2_plus_openchat_sharegpt4

adapter: qlora
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

low_cpu_mem_usage: true
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 5
saves_per_epoch: 5
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
weight_decay: 0.0
special_tokens:

Built with Axolotl

Training graphs

image/png

image/png

image/png


Developers

Lead developer - Peter Devine ptrdvn

Administrative supervisor - Shunichi Taniguchi ptrdvn