File size: 1,661 Bytes
a74dfc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
base_model: liamvbetts/t5-small-finetuned-2024-03-16
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-2024-03-17
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-small-finetuned-2024-03-17
This model is a fine-tuned version of [liamvbetts/t5-small-finetuned-2024-03-16](https://huggingface.co/liamvbetts/t5-small-finetuned-2024-03-16) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6870
- Rouge1: 36.9896
- Rouge2: 24.6597
- Rougel: 32.6752
- Rougelsum: 32.6582
- Gen Len: 18.8143
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.9296 | 1.0 | 276 | 1.6870 | 36.9896 | 24.6597 | 32.6752 | 32.6582 | 18.8143 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|