File size: 7,311 Bytes
abb6018
 
346efb7
abb6018
 
 
 
 
 
346efb7
 
 
 
 
 
31ab787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abb6018
 
 
 
 
 
 
 
 
 
 
 
 
31ab787
abb6018
 
31ab787
abb6018
 
31ab787
abb6018
 
31ab787
abb6018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
346efb7
 
31ab787
abb6018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ab787
abb6018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ab787
abb6018
 
346efb7
b41e541
abb6018
 
346efb7
abb6018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ab787
 
 
 
 
 
 
 
 
 
 
abb6018
 
 
 
 
 
b41e541
abb6018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
- precision
- recall
- f1
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: temperature salinity profile collected ctd cast nw atlantic limit40 w noaa
    ship delaware ii noaa ship albatross iv 14 january 1997 30 october 1997 data collected
    12 cruise multiple program ctd cast primarily made conjunction bongo plankton
    tow plankton data included
- text: plume height misr 82420 california fire 2020 multiangle imaging spectroradiometer
    misr team nasa jet propulsion laboratory california institute technology pasadena
    california provided map wildfire smoke plume height several wildfire california
    derived data acquired misr instrument board nasa terra satellite august 24 2020
    misr carry nine fixed camera view scene different angle period seven minute accounting
    true motion cloud due wind angular parallax cloud different view used derive height
    smoke plume data contain plume height information czu lightning complex lnu lightning
    complex scu lightning complex fire observed misr approximately 1210 pm local time
    august 24 2020 plume height give indication fire intensity indicates whether smoke
    impacting air quality groundlevel observation plume height also important input
    air quality model predict smoke go might affect downwind misr plume height map
    produced using misr interactive explorer minx software
- text: municipal land transfer tax revenue summary
- text: aggregated broccoli production yield
- text: street furniture bicycle parking
inference: false
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.595
      name: Accuracy
    - type: precision
      value: 0.7037037037037037
      name: Precision
    - type: recall
      value: 0.8407079646017699
      name: Recall
    - type: f1
      value: 0.7661290322580645
      name: F1
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 512 tokens
<!-- - **Number of Classes:** Unknown -->
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

## Evaluation

### Metrics
| Label   | Accuracy | Precision | Recall | F1     |
|:--------|:---------|:----------|:-------|:-------|
| **all** | 0.595    | 0.7037    | 0.8407 | 0.7661 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("lgd/setfit-multilabel")
# Run inference
preds = model("street furniture bicycle parking")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 1   | 59.4   | 411 |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-----:|:----:|:-------------:|:---------------:|
| 0.002 | 1    | 0.2153        | -               |
| 0.1   | 50   | 0.201         | -               |
| 0.2   | 100  | 0.1433        | -               |
| 0.3   | 150  | 0.0812        | -               |
| 0.4   | 200  | 0.0866        | -               |
| 0.5   | 250  | 0.0306        | -               |
| 0.6   | 300  | 0.1093        | -               |
| 0.7   | 350  | 0.0647        | -               |
| 0.8   | 400  | 0.0255        | -               |
| 0.9   | 450  | 0.0421        | -               |
| 1.0   | 500  | 0.0366        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->