File size: 8,723 Bytes
a241478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- coding: utf-8 -*-
import gym
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from scenarioManager import StochasticDemandModel

class SimplePlant(gym.Env):

    def __init__(self, settings: dict, stoch_model: StochasticDemandModel):
        
        super(SimplePlant, self).__init__()
        self.settings = settings
        # Basic cardinalities:
        self.T = settings['time_horizon']
        self.n_items = settings['n_items']
        self.n_machines = settings['n_machines']

        # Caracteristics:
        self.machine_production_matrix = settings['machine_production']
        # for each machine the states in which it can be:
        self.possible_machine_production = []
        for i in range(self.n_machines):
            self.possible_machine_production.append([0])
            self.possible_machine_production[-1].extend(
                list(
                    np.nonzero(settings['machine_production'][i])[0] + 1
                )
            )

        self.max_inventory_level = settings['max_inventory_level']

        # Costs:
        self.holding_costs = settings['holding_costs']
        self.lost_sales_costs = settings['lost_sales_costs']
        self.setup_costs = settings['setup_costs']
        self.setup_loss = settings['setup_loss']

        # Initial State:
        self.current_step = 0
        self.machine_initial_setup = settings['initial_setup'] # This is the vector indicating the index of the item type for which the initial setup of the machine is prepared
        self.initial_inventory = settings['initial_inventory']
        self.inventory_level = self.initial_inventory.copy()
        self.machine_setup = self.machine_initial_setup.copy()

        # Demand generation:
        self.stoch_model = stoch_model
        # Generate demand scenario:
        self.generate_scenario_realization()

    def generate_scenario_realization(self):
        self.scenario_demand = self.stoch_model.generate_scenario(
            n_time_steps = self.T + 1
        )

    def _random_initial_state(self):
        for i in range(self.n_items):
            self.inventory_level[i] = np.random.randint(0, self.max_inventory_level[i])
        for m in range(self.n_machines):
            non_zero_prod = [i for i, e in enumerate(self.machine_production_matrix[m]) if e != 0]
            self.machine_setup[m] = np.random.choice(non_zero_prod) + 1
        # Update initial value (useful for restarting time)
        self.initial_inventory = self.inventory_level.copy()
        self.machine_initial_setup = self.machine_setup.copy()

    def _next_observation(self):
        """
        Returns the next demand
        """
        self.demand = self.scenario_demand[:, self.current_step]
        return {
            # 'demand': self.demand,
            'inventory_level': self.inventory_level,
            'machine_setup': self.machine_setup
        }

    def _post_decision(self, action, machine_setup, inventory_level, setup_costs):
        setup_loss = np.zeros(self.n_machines, dtype=int)
        # if we are just changing the setup, we use the setup cost matrix with the corresponding position given by the actual setup and the new setup
        for m in range(self.n_machines):   
            if action[m] != 0: # if the machine is not iddle
                # 1. IF NEEDED CHANGE SETUP
                if machine_setup[m] != action[m] and action[m] != 0:
                    setup_costs[m] = self.setup_costs[m][action[m] - 1] 
                    setup_loss[m] = self.setup_loss[m][action[m] - 1]
                machine_setup[m] = action[m]
                # 2. PRODUCTION
                production = self.machine_production_matrix[m][action[m] - 1] - setup_loss[m]
                inventory_level[action[m] - 1] += production
            else:
                machine_setup[m] = 0

    def _satisfy_demand(self, lost_sales, inventory_level, demand, holding_costs):
        # 3. SATIFING DEMAND
        for i in range(self.n_items):
            inventory_level[i] -= demand[i]
            if inventory_level[i] < 0:
                lost_sales[i] -= inventory_level[i] * self.lost_sales_costs[i]
                inventory_level[i] = 0
            elif inventory_level[i] > self.max_inventory_level[i]:
                inventory_level[i] = self.max_inventory_level[i]
            # 4. HOLDING COSTS
            holding_costs[i] += inventory_level[i] * self.holding_costs[i]
        
    def _take_action(self, action, machine_setup, inventory_level, demand):

        setup_costs = np.zeros(self.n_machines)
        lost_sales = np.zeros(self.n_items)
        holding_costs = np.zeros(self.n_items)
        # 1. POST DECISION
        self._post_decision(action, machine_setup, inventory_level, setup_costs)
        # 2. RND NOISE
        self._satisfy_demand(lost_sales, inventory_level, demand, holding_costs)
        return {
            'setup_costs': sum(setup_costs),
            'lost_sales': sum(lost_sales),
            'holding_costs': sum(holding_costs),
        }

    def reset_time(self):
        # State variable:
        self.current_step = 0
        self.inventory_level = self.initial_inventory.copy()
        self.machine_setup = self.machine_initial_setup.copy()
        # Monitoring variables
        self.total_cost = {
            "setup_costs": 0.0,
            "lost_sales": 0.0,
            "holding_costs": 0.0,
        }
        obs = self._next_observation()
        return obs

    def reset(self): 
        """
        Reset all environment variables important for the simulation.
            - Inventory
            - Setup
            - Demand_function
            - Current_step
        """
            
        # State variable:
        self.current_step = 0
        self._random_initial_state()
   
        # Monitoring variables
        self.total_cost = {
            "setup_costs": 0.0,
            "lost_sales": 0.0,
            "holding_costs": 0.0,
        } 
        self.generate_scenario_realization()
        # ci serve avere una domanda diversa quando resetto? secondo me no.
        obs = self._next_observation()
        return obs

    def step(self, action, verbose=False):
        """
        Step method: Execute one time step within the environment

        Parameters
        ----------
        action : action given by the agent

        Returns
        -------
        obs : Observation of the state give the method _next_observation
        reward : Cost given by the _reward method
        done : returns True or False given by the _done method
        dict : possible information for control to environment monitoring

        """
        # TODO: ragionare bene sul tempo
        #if len(set(action)) != len(action):
        #    print("Error, at least two machines produce the same item")
        #    quit()

        if verbose:
            print(f"\t demand_{self.current_step}: {self.demand}")
        self.total_cost = self._take_action(
            action,
            self.machine_setup,
            self.inventory_level,
            self.demand
        )
        
        reward = sum([ele for _, ele in self.total_cost.items()])
        
        self.current_step += 1
        done = self.current_step == self.T
        obs = self._next_observation()
        info = {key: ele for key, ele in self.total_cost.items()}
        info['inventory'] = self.inventory_level
        return obs, reward, done, info

    def render(self, mode='human', close=False):
        # Render the environment to the screen
        print(f'Time: {self.current_step}')
        print(f'  inventory: {self.inventory_level}')
        print(f'  setup: {self.machine_setup}')
        # print(f'  total_cost: {self.total_cost}')
        print(f'    setup_costs: {self.total_cost["setup_costs"]}')
        print(f'    lost_sales: {self.total_cost["lost_sales"]}')
        print(f'    holding_costs: {self.total_cost["holding_costs"]}')
        # print(f'\t demand + 1: {self.demand}')

    def plot_production_matrix(self, file_path=None):
        
        plt.rc('xtick',labelsize=15)
        plt.rc('ytick',labelsize=15)
        plt.rc('axes', linewidth=2)
        tmp = np.array(self.machine_production_matrix).T
        fig = plt.figure(figsize=(8,12), dpi= 100, facecolor='w', edgecolor='k')
        data_masked = np.ma.masked_where(
            tmp == 0, tmp
        )
        cax = plt.imshow(data_masked, interpolation = 'none', vmin = 1)

        fig.colorbar(cax)
        plt.xlabel('Items',fontsize=18,weight='bold')
        plt.ylabel('Machines',fontsize=18,weight='bold')

        if file_path:
            fig.savefig(file_path)
        else:
            plt.show()
        plt.close()