|
--- |
|
license: mit |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: xlm-roberta-base |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: prompt_fine_tuned_CB_XLMroberta |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# prompt_fine_tuned_CB_XLMroberta |
|
|
|
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4733 |
|
- Accuracy: 0.3182 |
|
- F1: 0.1536 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 400 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:| |
|
| 0.9542 | 0.4545 | 50 | 1.1060 | 0.3182 | 0.1536 | |
|
| 0.8627 | 0.9091 | 100 | 1.1621 | 0.3182 | 0.1536 | |
|
| 0.6647 | 1.3636 | 150 | 1.2304 | 0.3182 | 0.1536 | |
|
| 0.8065 | 1.8182 | 200 | 1.3215 | 0.3182 | 0.1536 | |
|
| 0.7675 | 2.2727 | 250 | 1.3718 | 0.3182 | 0.1536 | |
|
| 0.8203 | 2.7273 | 300 | 1.4238 | 0.3182 | 0.1536 | |
|
| 0.7817 | 3.1818 | 350 | 1.4576 | 0.3182 | 0.1536 | |
|
| 0.7012 | 3.6364 | 400 | 1.4733 | 0.3182 | 0.1536 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.40.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |