lenatr99's picture
prompt_fine_tuned_CB_XLMroberta
abb86ad verified
metadata
license: mit
library_name: peft
tags:
  - generated_from_trainer
base_model: xlm-roberta-base
metrics:
  - accuracy
  - f1
model-index:
  - name: prompt_fine_tuned_CB_XLMroberta
    results: []

prompt_fine_tuned_CB_XLMroberta

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4733
  • Accuracy: 0.3182
  • F1: 0.1536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 400

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9542 0.4545 50 1.1060 0.3182 0.1536
0.8627 0.9091 100 1.1621 0.3182 0.1536
0.6647 1.3636 150 1.2304 0.3182 0.1536
0.8065 1.8182 200 1.3215 0.3182 0.1536
0.7675 2.2727 250 1.3718 0.3182 0.1536
0.8203 2.7273 300 1.4238 0.3182 0.1536
0.7817 3.1818 350 1.4576 0.3182 0.1536
0.7012 3.6364 400 1.4733 0.3182 0.1536

Framework versions

  • PEFT 0.11.1
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1