metadata
library_name: peft
license: apache-2.0
base_model: TinyLlama/TinyLlama_v1.1
tags:
- axolotl
- generated_from_trainer
model-index:
- name: ac6561e1-e8e1-4f65-83fe-02c18241db03
results: []
See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: TinyLlama/TinyLlama_v1.1
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e4b62e75bc945988_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e4b62e75bc945988_train_data.json
type:
field_input: justification
field_instruction: claim
field_output: label
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 2
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/ac6561e1-e8e1-4f65-83fe-02c18241db03
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: true
local_rank: null
logging_steps: 5
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 4
mlflow_experiment_name: /tmp/e4b62e75bc945988_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 4056
special_tokens:
pad_token: </s>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: nexspear-byte
wandb_mode: online
wandb_name: ac6561e1-e8e1-4f65-83fe-02c18241db03
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ac6561e1-e8e1-4f65-83fe-02c18241db03
warmup_steps: 50
weight_decay: 0.01
xformers_attention: null
ac6561e1-e8e1-4f65-83fe-02c18241db03
This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 9.7406
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 98
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0103 | 1 | 9.7406 |
9.8507 | 0.5045 | 49 | 9.7406 |
9.9944 | 1.0090 | 98 | 9.7406 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1