File size: 1,953 Bytes
141ec7e 55b2308 141ec7e 55b2308 141ec7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
language:
- ymr
license: apache-2.0
base_model: vasista22/whisper-tamil-medium
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: leenag/Malasar_Luke
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# leenag/Malasar_Luke
This model is a fine-tuned version of [vasista22/whisper-tamil-medium](https://huggingface.co/vasista22/whisper-tamil-medium) on the Spoken Bible Corpus: Malasar dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5075
- Wer: 48.2010
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 0.018 | 11.3636 | 250 | 0.3526 | 50.2570 |
| 0.0059 | 22.7273 | 500 | 0.4000 | 49.5146 |
| 0.0002 | 34.0909 | 750 | 0.4418 | 48.3152 |
| 0.0001 | 45.4545 | 1000 | 0.4785 | 48.0868 |
| 0.0 | 56.8182 | 1250 | 0.4923 | 47.8013 |
| 0.0 | 68.1818 | 1500 | 0.5008 | 47.8013 |
| 0.0 | 79.5455 | 1750 | 0.5059 | 48.2010 |
| 0.0 | 90.9091 | 2000 | 0.5075 | 48.2010 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.16.0
- Tokenizers 0.19.1
|