metadata
base_model: >-
/exports/eddie/scratch/s1970716/models/summarization/longt5_xl_gov_memsum_bp_5/checkpoint-1360
tags:
- generated_from_trainer
datasets:
- learn3r/gov_report_memsum_bp
metrics:
- rouge
model-index:
- name: longt5_xl_gov_memsum_bp_10
results:
- task:
name: Summarization
type: summarization
dataset:
name: learn3r/gov_report_memsum_bp
type: learn3r/gov_report_memsum_bp
metrics:
- name: Rouge1
type: rouge
value: 67.1508
longt5_xl_gov_memsum_bp_10
This model is a fine-tuned version of /exports/eddie/scratch/s1970716/models/summarization/longt5_xl_gov_memsum_bp_5/checkpoint-1360 on the learn3r/gov_report_memsum_bp dataset. It achieves the following results on the evaluation set:
- Loss: 1.1440
- Rouge1: 67.1508
- Rouge2: 38.9594
- Rougel: 36.6571
- Rougelsum: 64.7944
- Gen Len: 712.0165
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
0.4356 | 1.0 | 272 | 1.1440 | 67.1508 | 38.9594 | 36.6571 | 64.7944 | 712.0165 |
0.3485 | 2.0 | 545 | 1.2622 | 66.9296 | 38.7595 | 36.4964 | 64.6309 | 808.4393 |
0.2933 | 3.0 | 818 | 1.3804 | 65.3911 | 38.0875 | 35.5935 | 63.1902 | 976.0340 |
0.2443 | 4.0 | 1091 | 1.4998 | 67.0929 | 38.0763 | 35.8704 | 64.9022 | 816.7253 |
0.2033 | 4.99 | 1360 | 1.5508 | 64.1251 | 36.9601 | 34.8068 | 61.9673 | 1052.8817 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1