metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5005
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: especialista de risco e prevenção a fraudes
sentences:
- risk & compliance
- internal communication
- accounting
- source_sentence: coord integracao do cliente ii
sentences:
- strategic planning
- customer experience
- não encontrado (adicione nas observações)
- source_sentence: gerente sr. marketing e performance
sentences:
- business operations
- d&i
- performance marketing
- source_sentence: gerente executivo de operacoes
sentences:
- business operations
- sdr
- product management
- source_sentence: sr designer
sentences:
- product design
- talent acquisition
- lawyer
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.6245583038869258
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8206713780918727
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8754416961130742
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.926678445229682
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6245583038869258
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2735571260306242
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17508833922261482
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0926678445229682
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6245583038869258
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8206713780918727
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8754416961130742
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.926678445229682
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7790196193570564
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7312496494475299
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7347864977321262
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.6245583038869258
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8206713780918727
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.8754416961130742
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.926678445229682
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6245583038869258
name: Dot Precision@1
- type: dot_precision@3
value: 0.2735571260306242
name: Dot Precision@3
- type: dot_precision@5
value: 0.17508833922261482
name: Dot Precision@5
- type: dot_precision@10
value: 0.0926678445229682
name: Dot Precision@10
- type: dot_recall@1
value: 0.6245583038869258
name: Dot Recall@1
- type: dot_recall@3
value: 0.8206713780918727
name: Dot Recall@3
- type: dot_recall@5
value: 0.8754416961130742
name: Dot Recall@5
- type: dot_recall@10
value: 0.926678445229682
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.7790196193570564
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7312496494475299
name: Dot Mrr@10
- type: dot_map@100
value: 0.7347864977321262
name: Dot Map@100
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'sr designer',
'product design',
'talent acquisition',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6246 |
cosine_accuracy@3 | 0.8207 |
cosine_accuracy@5 | 0.8754 |
cosine_accuracy@10 | 0.9267 |
cosine_precision@1 | 0.6246 |
cosine_precision@3 | 0.2736 |
cosine_precision@5 | 0.1751 |
cosine_precision@10 | 0.0927 |
cosine_recall@1 | 0.6246 |
cosine_recall@3 | 0.8207 |
cosine_recall@5 | 0.8754 |
cosine_recall@10 | 0.9267 |
cosine_ndcg@10 | 0.779 |
cosine_mrr@10 | 0.7312 |
cosine_map@100 | 0.7348 |
dot_accuracy@1 | 0.6246 |
dot_accuracy@3 | 0.8207 |
dot_accuracy@5 | 0.8754 |
dot_accuracy@10 | 0.9267 |
dot_precision@1 | 0.6246 |
dot_precision@3 | 0.2736 |
dot_precision@5 | 0.1751 |
dot_precision@10 | 0.0927 |
dot_recall@1 | 0.6246 |
dot_recall@3 | 0.8207 |
dot_recall@5 | 0.8754 |
dot_recall@10 | 0.9267 |
dot_ndcg@10 | 0.779 |
dot_mrr@10 | 0.7312 |
dot_map@100 | 0.7348 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,005 training samples
- Columns:
input
andoutput
- Approximate statistics based on the first 1000 samples:
input output type string string details - min: 3 tokens
- mean: 8.83 tokens
- max: 21 tokens
- min: 3 tokens
- mean: 7.21 tokens
- max: 18 tokens
- Samples:
input output fresador mecanico ii
não encontrado (adicione nas observações)
analista de sistemas ui ux iii
product design
devops
devops engineering
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,132 evaluation samples
- Columns:
input
andoutput
- Approximate statistics based on the first 1000 samples:
input output type string string details - min: 3 tokens
- mean: 8.76 tokens
- max: 20 tokens
- min: 3 tokens
- mean: 7.08 tokens
- max: 18 tokens
- Samples:
input output produtor (a) de video pleno
não encontrado (adicione nas observações)
ai staff software engineer
software engineering
montador digital i
não encontrado (adicione nas observações)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepswarmup_ratio
: 0.1
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | cosine_map@100 |
---|---|---|---|---|
0 | 0 | - | - | 0.3578 |
0.3195 | 200 | - | 0.9975 | 0.5035 |
0.6390 | 400 | - | 0.8471 | 0.5845 |
0.7987 | 500 | 1.0355 | - | - |
0.9585 | 600 | - | 0.7569 | 0.6157 |
1.2780 | 800 | - | 0.7542 | 0.6565 |
1.5974 | 1000 | 0.648 | 0.6835 | 0.6786 |
1.9169 | 1200 | - | 0.6569 | 0.6851 |
2.2364 | 1400 | - | 0.6480 | 0.7167 |
2.3962 | 1500 | 0.5253 | - | - |
2.5559 | 1600 | - | 0.6506 | 0.7110 |
2.8754 | 1800 | - | 0.6391 | 0.7348 |
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 2.14.4
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}