---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4372
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: analista de produtos pl
sentences:
- product management
- business operations
- logistic management generalist
- source_sentence: product analyst ii
sentences:
- product management
- business development (bizdev)
- compliance
- source_sentence: analista de gestão de gente pl
sentences:
- data engineering
- hr generalist
- data analysis
- source_sentence: general services
sentences:
- financial planning and analysis (fp&a)
- customer success
- general services
- source_sentence: const parceria de negocio ii
sentences:
- hr generalist
- copywriter
- business development (bizdev)
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.3202195791399817
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.454711802378774
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5224153705397987
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6184812442817932
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.3202195791399817
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15157060079292467
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10448307410795975
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.061848124428179316
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.3202195791399817
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.454711802378774
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5224153705397987
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6184812442817932
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.45577270813945114
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.4052037496913979
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.4178228611548902
name: Cosine Map@100
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'const parceria de negocio ii',
'business development (bizdev)',
'hr generalist',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.3202 |
| cosine_accuracy@3 | 0.4547 |
| cosine_accuracy@5 | 0.5224 |
| cosine_accuracy@10 | 0.6185 |
| cosine_precision@1 | 0.3202 |
| cosine_precision@3 | 0.1516 |
| cosine_precision@5 | 0.1045 |
| cosine_precision@10 | 0.0618 |
| cosine_recall@1 | 0.3202 |
| cosine_recall@3 | 0.4547 |
| cosine_recall@5 | 0.5224 |
| cosine_recall@10 | 0.6185 |
| **cosine_ndcg@10** | **0.4558** |
| cosine_mrr@10 | 0.4052 |
| cosine_map@100 | 0.4178 |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 4,372 training samples
* Columns: input
and output
* Approximate statistics based on the first 1000 samples:
| | input | output |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
analista de desenvolvimento organizacional
| learning & development
|
| software engineer sr
| software engineering
|
| gerente de grupo de produtos i
| product management
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### Unnamed Dataset
* Size: 1,093 evaluation samples
* Columns: input
and output
* Approximate statistics based on the first 1000 samples:
| | input | output |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details | analista de student experience ii
| customer support
|
| legal support
| legal support
|
| analista de dho
| learning & development
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters