File size: 1,858 Bytes
08ea419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7bd3b3
 
08ea419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7bd3b3
 
08ea419
 
 
 
 
 
 
 
 
 
 
f7bd3b3
 
 
 
 
 
 
 
08ea419
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: edos-2023-baseline-xlm-roberta-base-label_category
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# edos-2023-baseline-xlm-roberta-base-label_category

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4469
- F1: 0.8470

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.1983        | 1.18  | 100  | 1.1133          | 0.1623 |
| 1.0984        | 2.35  | 200  | 0.9809          | 0.2407 |
| 0.9901        | 3.53  | 300  | 0.8533          | 0.5465 |
| 0.8389        | 4.71  | 400  | 0.7101          | 0.6863 |
| 0.7889        | 5.88  | 500  | 0.5927          | 0.7696 |
| 0.6865        | 7.06  | 600  | 0.5303          | 0.8061 |
| 0.6364        | 8.24  | 700  | 0.4778          | 0.8278 |
| 0.5907        | 9.41  | 800  | 0.4469          | 0.8470 |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2