File size: 3,458 Bytes
37835c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: edos-2023-baseline-roberta-base-label_sexist
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# edos-2023-baseline-roberta-base-label_sexist

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0182
- F1: 0.9951

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5623        | 0.29  | 100  | 0.4459          | 0.6857 |
| 0.4055        | 0.57  | 200  | 0.3119          | 0.8135 |
| 0.3455        | 0.86  | 300  | 0.2704          | 0.8430 |
| 0.3198        | 1.14  | 400  | 0.2431          | 0.8640 |
| 0.2817        | 1.43  | 500  | 0.2579          | 0.8650 |
| 0.2997        | 1.71  | 600  | 0.2089          | 0.8911 |
| 0.2784        | 2.0   | 700  | 0.2069          | 0.8818 |
| 0.2231        | 2.29  | 800  | 0.2233          | 0.8872 |
| 0.2261        | 2.57  | 900  | 0.1598          | 0.9215 |
| 0.238         | 2.86  | 1000 | 0.1524          | 0.9137 |
| 0.2014        | 3.14  | 1100 | 0.1155          | 0.9441 |
| 0.1669        | 3.43  | 1200 | 0.1203          | 0.9436 |
| 0.1691        | 3.71  | 1300 | 0.0957          | 0.9566 |
| 0.1787        | 4.0   | 1400 | 0.0763          | 0.9709 |
| 0.1277        | 4.29  | 1500 | 0.0696          | 0.9717 |
| 0.1359        | 4.57  | 1600 | 0.0654          | 0.9734 |
| 0.1138        | 4.86  | 1700 | 0.0542          | 0.9788 |
| 0.1057        | 5.14  | 1800 | 0.0587          | 0.9747 |
| 0.1055        | 5.43  | 1900 | 0.0420          | 0.9843 |
| 0.0908        | 5.71  | 2000 | 0.0386          | 0.9866 |
| 0.1094        | 6.0   | 2100 | 0.0328          | 0.9890 |
| 0.0845        | 6.29  | 2200 | 0.0320          | 0.9885 |
| 0.0697        | 6.57  | 2300 | 0.0322          | 0.9893 |
| 0.083         | 6.86  | 2400 | 0.0260          | 0.9912 |
| 0.0659        | 7.14  | 2500 | 0.0259          | 0.9923 |
| 0.0745        | 7.43  | 2600 | 0.0304          | 0.9900 |
| 0.0623        | 7.71  | 2700 | 0.0284          | 0.9912 |
| 0.0825        | 8.0   | 2800 | 0.0215          | 0.9933 |
| 0.0414        | 8.29  | 2900 | 0.0222          | 0.9939 |
| 0.0477        | 8.57  | 3000 | 0.0231          | 0.9940 |
| 0.0606        | 8.86  | 3100 | 0.0211          | 0.9937 |
| 0.0616        | 9.14  | 3200 | 0.0190          | 0.9947 |
| 0.0413        | 9.43  | 3300 | 0.0182          | 0.9950 |
| 0.0462        | 9.71  | 3400 | 0.0181          | 0.9949 |
| 0.0473        | 10.0  | 3500 | 0.0182          | 0.9951 |


### Framework versions

- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2