File size: 1,320 Bytes
894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 894e50b 38ad294 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: transformers
language:
- ko
license: apache-2.0
base_model: openai/whisper-base
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- lazio1900/stt_test
model-index:
- name: lazio1900/stt_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lazio1900/stt_test
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the lazio1900/stt_test dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 100
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.47.0.dev0
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
|