File size: 8,703 Bytes
5cc9c06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
from typing import Optional
import copy
import math
import torch
from torch import nn, Tensor
from torchtune.modules import (
CausalSelfAttention,
FeedForward,
KVCache,
RMSNorm,
RotaryPositionalEmbeddings,
# TransformerDecoder, replaced with our custom implementation.
TransformerDecoderLayer,
)
from masked_apply import MaskedApply
def initialize_identity_linear(size):
layer = nn.Linear(size, size)
layer.weight.data.copy_(torch.eye(size))
layer.bias.data.copy_(torch.zeros(size))
return layer
def initialize_linear(size):
return nn.Linear(size, size)
def initialize_kaiming_uniform_linear(size):
layer = nn.Linear(size, size)
nn.init.kaiming_uniform_(layer.weight, a=math.sqrt(5))
layer.bias.data.copy_(torch.zeros(size))
return layer
def initialize_zeros_linear(size):
layer = nn.Linear(size, size)
layer.weight.data.copy_(torch.zeros(size))
layer.bias.data.copy_(torch.zeros(size))
return layer
INITIALIZATION_OPTIONS = {
"identity": initialize_identity_linear,
"default": initialize_linear,
"kaiming_uniform": initialize_kaiming_uniform_linear,
"zeros": initialize_zeros_linear,
}
def _get_clones(module: nn.Module, n: int) -> nn.ModuleList:
"""
Return a list of ``n`` identical layers.
Args:
module (nn.Module): module to be cloned
n (int): number of clones
Returns:
nn.ModuleList: list of ``n`` identical layers
"""
# FIXME: copy.deepcopy() is not defined on nn.module
return nn.ModuleList([copy.deepcopy(module) for i in range(n)])
class ColoringTransformerDecoder(nn.Module):
"""
See torchtune.models.llama2.TransformerDecoder for the original implementation.
"""
def __init__(
self,
tok_embeddings: nn.Embedding,
embedding_transform: nn.Module,
layer: TransformerDecoderLayer,
num_layers: int,
norm: nn.Module,
output: nn.Linear,
embedding_norm: nn.Module = None
) -> None:
super().__init__()
self.tok_embeddings = tok_embeddings
self.embedding_transform = embedding_transform
self.embedding_norm = embedding_norm
self.layers = _get_clones(layer, num_layers)
self.norm = norm
self.output = output
def forward(
self,
tokens: Tensor,
mask: Optional[Tensor] = None,
colors: Optional[Tensor] = None,
curr_pos: int = 0
) -> Tensor:
"""
Args:
tokens (Tensor): input tensor with shape [b x s]
mask (Optional[Tensor]): attention mask tensor, defaults to None.
curr_pos (int): current position in the seq, defaults to 0.
Only relevant when incrementally decoding.
Returns:
Tensor: output tensor with shape [b x s x v]
Notation used for tensor shapes:
- b: batch size
- s: sequence length
- v: vocab size
- d: embed dim
"""
# input tensor of shape [b, s]
bsz, seq_len = tokens.shape
# shape: [b, s, d]
h = self.tok_embeddings(tokens)
# Apply normalization before embedding transform to improve
# training stability.
ch = h
if self.embedding_norm is not None:
# TODO: norm does an in-place operation, so we need to clone the input
ch = self.embedding_norm(h.clone())
# Apply the embedding transform (e.g. color layer)
ch = self.embedding_transform(ch, colors)
# Add the output of the color transform to the embeddings
h = h + ch
# TODO: Fix the masking logic to not rely on checking kv_cache
if seq_len > 1 and self.layers[0].attn.kv_cache is not None:
mask = torch.full(
(1, 1, seq_len, seq_len), float("-inf"), device=tokens.device
)
mask = torch.triu(mask, diagonal=curr_pos + 1)
for layer in self.layers:
# shape: [b, s, d]
h = layer(h, mask, curr_pos)
# shape: [b, s, d]
h = self.norm(h)
# shape: [b, s, v]
output = self.output(h).float()
return output
def coloring_llama2_7b(color_layer_initialization: str = "zeros", norm_before_color_layer: bool = False, max_batch_size: Optional[int] = None) -> ColoringTransformerDecoder:
"""Builder for creating a Llama2 model initialized w/ the default 7b parameter values.
From https://arxiv.org/abs/2307.09288, these default values are:
- vocab_size: 32,000
- embed_dim: 4,096
- num_layers: 32
- num_heads: 32
- num_kv_heads: 32
- max_seq_len: 4,096
- norm_eps: 1e-5
Args:
max_batch_size (Optional[int]): Maximum batch size to be passed to KVCache.
Returns:
A ``TransformerDecoder`` instance of the Llama2 model.
"""
return coloring_llama2(
color_layer_initialization=color_layer_initialization,
vocab_size=32_000,
num_layers=32,
num_heads=32,
num_kv_heads=32,
embed_dim=4096,
max_seq_len=4096,
num_colors=4, # color for default, instruction, input, response
max_batch_size=max_batch_size,
attn_dropout=0.0,
norm_eps=1e-5,
norm_before_color_layer=norm_before_color_layer
)
def _scale_hidden_dim_for_mlp(dim: int, multiple_of: int = 256) -> int:
"""Scale hidden dimension for MLP to keep number of parameters and computation constant.
Args:
dim (int): Input dimension.
multiple_of (int): Round scaled dimension to nearest multiple of `multiple_of` for clean computation.
Returns:
Scaled hidden dimension.
"""
# Scale hidden dimension by (2/3)4d for SwiGLU to keep number of
# parameters and computation constant
hidden_dim = 4 * int(2 * dim / 3)
# Round hidden dimension to nearest multiple of `multiple_of`
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
return hidden_dim
def coloring_llama2(
color_layer_initialization: str,
vocab_size: int,
num_layers: int,
num_heads: int,
num_kv_heads: int,
embed_dim: int,
max_seq_len: int,
num_colors: int,
norm_before_color_layer: bool = False,
attn_dropout: float = 0.0,
max_batch_size: Optional[int] = None,
norm_eps: float = 1e-5,
):
if color_layer_initialization not in INITIALIZATION_OPTIONS:
raise ValueError(f"Invalid color_layer_initialization: {color_layer_initialization}. Expected one of {list(INITIALIZATION_OPTIONS.keys())}.")
color_layer_initializer = INITIALIZATION_OPTIONS[color_layer_initialization]
head_dim = embed_dim // num_heads
num_kv_heads = num_kv_heads if num_kv_heads else num_heads
kv_cache = (
KVCache(
max_batch_size=max_batch_size,
max_seq_len=max_seq_len,
n_kv_heads=num_heads,
head_dim=head_dim,
)
if max_batch_size is not None
else None
)
rope = RotaryPositionalEmbeddings(dim=head_dim, max_seq_len=max_seq_len)
self_attn = CausalSelfAttention(
embed_dim=embed_dim,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
head_dim=head_dim,
q_proj=nn.Linear(embed_dim, num_heads * head_dim, bias=False),
k_proj=nn.Linear(embed_dim, num_kv_heads * head_dim, bias=False),
v_proj=nn.Linear(embed_dim, num_kv_heads * head_dim, bias=False),
output_proj=nn.Linear(embed_dim, embed_dim, bias=False),
pos_embeddings=rope,
kv_cache=kv_cache,
max_seq_len=max_seq_len,
attn_dropout=attn_dropout,
)
hidden_dim = _scale_hidden_dim_for_mlp(embed_dim)
mlp = FeedForward(dim=embed_dim, hidden_dim=hidden_dim, linear_class=nn.Linear)
layer = TransformerDecoderLayer(
attn=self_attn,
mlp=mlp,
sa_norm=RMSNorm(dim=embed_dim, eps=norm_eps),
mlp_norm=RMSNorm(dim=embed_dim, eps=norm_eps),
)
tok_embeddings = nn.Embedding(vocab_size, embed_dim)
output_proj = nn.Linear(embed_dim, vocab_size, bias=False)
embedding_transform = MaskedApply(
[color_layer_initializer(embed_dim) for _ in range(num_colors)],
strict=False
)
embedding_norm = RMSNorm(embed_dim, eps=norm_eps) if norm_before_color_layer else None
return ColoringTransformerDecoder(
tok_embeddings=tok_embeddings,
embedding_transform=embedding_transform,
embedding_norm=embedding_norm,
layer=layer,
num_layers=num_layers,
norm=RMSNorm(embed_dim, eps=norm_eps),
output=output_proj,
)
|