medical imaging
ultrasound
File size: 18,671 Bytes
6ce7d82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
"""
Network definition file
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchaudio.functional import lfilter

from pytorch_lightning import LightningModule

import numpy as np
from scipy.signal import butter, gaussian
from copy import deepcopy
import argparse


class Net(LightningModule):
    def __init__(self, **kwargs):
        super().__init__()

        parser = Net.add_model_specific_args()
        for action in parser._actions:
            if action.dest in kwargs:
                action.default = kwargs[action.dest]

        args = parser.parse_args([])
        self.hparams.update(vars(args))

        if not hasattr(self, f"_init_{self.hparams.net_type}_net"):
            raise ValueError(f"Unknown net type {self.hparams.net_type}")

        self._net = eval(f"self._init_{self.hparams.net_type}_net(n_inputs={self.hparams.n_inputs}, n_outputs={self.hparams.n_outputs})")

        if self.hparams.bias is not None:
            if hasattr(self.hparams.bias, "__iter__"):
                for i in range(len(self.hparams.bias)):
                    self._net[-1].c.bias[i].data.fill_(self.hparams.bias[i])
            else:
                self._net[-1].c.bias.data.fill_(self.hparams.bias)

    @staticmethod
    def _init_tbme2_net(n_inputs: int = 1, n_outputs: int = 1):
        return nn.Sequential(
            # Encoder
            DownBlock(n_inputs, 32, 32, 3, stride=[1, 2], pool=None,   push=False, layers=3),
            DownBlock(32,  32,  32,     3, stride=[1, 2], pool=None,   push=False, layers=3),
            DownBlock(32,  32,  32,     3, stride=[1, 2], pool=None,   push=False, layers=3),
            DownBlock(32,  32,  32,     3, stride=[1, 2], pool=None,   push=True,  layers=3),
            DownBlock(32,  32,  64,     3, stride=1,      pool=[2, 2], push=True,  layers=3),
            DownBlock(64,  64,  128,    3, stride=1,      pool=[2, 2], push=True,  layers=3),
            DownBlock(128, 128, 512,    3, stride=1,      pool=[2, 2], push=False, layers=3),
            # Decoder
            UpBlock(512, 128, 3, scale_factor=2, pop=False, layers=3),
            UpBlock(256, 64, 3,  scale_factor=2, pop=True,  layers=3),
            UpBlock(128, 32, 3,  scale_factor=2, pop=True,  layers=3),
            UpBlock(64, 32, 3,   scale_factor=2, pop=True,  layers=3),
            UpStep(32, 32, 3,    scale_factor=1),
            Compress(32, n_outputs))

    @staticmethod
    def _init_embc_net(n_inputs: int = 1, n_outputs: int = 1):
        return nn.Sequential(
            # Encoder
            DownBlock(n_inputs, 32, 32, 15, [1, 2], None, layers=1),
            DownBlock(32, 32, 32, 13, [1, 2], None, layers=1),
            DownBlock(32, 32, 32, 11, [1, 2], None, layers=1),
            DownBlock(32, 32, 32, 9, [1, 2], None, True, layers=1),
            DownBlock(32, 32, 64, 7, 1, [2, 2], True, layers=1),
            DownBlock(64, 64, 128, 5, 1, [2, 2], True, layers=1),
            DownBlock(128, 128, 512, 3, 1, [2, 2], layers=1),
            # Decoder
            UpBlock(512, 128, 5, 2, layers=1),
            UpBlock(256, 64, 7, 2, True, layers=1),
            UpBlock(128, 32, 9, 2, True, layers=1),
            UpBlock(64, 32, 11, 2, True, layers=1),
            UpStep(32, 32, 3, 1),
            Compress(32, n_outputs))

    @staticmethod
    def _init_tbme_net(n_inputs: int = 1, n_outputs: int = 1):
        return nn.Sequential(
            # Encoder
            DownBlock(n_inputs, 32, 32, 3, [1, 2], None, layers=1),
            DownBlock(32, 32, 32, 3, [1, 2], None, layers=1),
            DownBlock(32, 32, 32, 3, [1, 2], None, layers=1),
            DownBlock(32, 32, 32, 3, [1, 2], None, True, layers=1),
            DownBlock(32, 32, 64, 3, 1, [2, 2], True, layers=1),
            DownBlock(64, 64, 128, 3, 1, [2, 2], True, layers=1),
            DownBlock(128, 128, 512, 3, 1, [2, 2], layers=1),
            # Decoder
            UpBlock(512, 128, 3, 2, layers=1),
            UpBlock(256, 64, 3, 2, True, layers=1),
            UpBlock(128, 32, 3, 2, True, layers=1),
            UpBlock(64, 32, 3, 2, True, layers=1),
            UpStep(32, 32, 3, 1),
            Compress(32, n_outputs))

    @staticmethod
    def add_model_specific_args(parent_parser=None):
        parser = argparse.ArgumentParser(
            prog="Net",
            usage=Net.__doc__,
            parents=[parent_parser] if parent_parser is not None else [],
            add_help=False)

        parser.add_argument("--random_mirror", type=int, nargs="?", default=1, help="Randomly mirror data to increase diversity when using flat plate wave")
        parser.add_argument("--noise_std", type=float, nargs="*", help="range of std of random noise to add to the input signal [0 val] or [min max]")
        parser.add_argument("--quantization", type=float, nargs="?", help="Quantization noise")
        parser.add_argument("--rand_drop", type=int, nargs="*", help="Random drop lines, between 0 and value lines if single value, or between two values")
        parser.add_argument("--normalize_net", type=float, default=0.0, help="Coefficient for normalizing network weights")

        parser.add_argument("--learning_rate", type=float, default=5e-3, help="Learning rate to use for optimizer")
        parser.add_argument("--lr_sched_step", type=int, default=15, help="Learning decay, update step size")
        parser.add_argument("--lr_sched_gamma", type=float, default=0.65, help="Learning decay gamma")

        parser.add_argument("--net_type", default="tbme2", help="The network to use [tbme2/embc/tbme]")
        parser.add_argument("--bias", type=float, nargs="*", help="Set bias on last layer, set to 1500 when training from scratch on SoS output")
        parser.add_argument("--decimation", type=int, help="Subsample phase signal")
        parser.add_argument("--phase_inv", type=int, default=0, help="Use phase for inversion")

        parser.add_argument("--center_freq", type=float, default=5e6, help="Matched filter and IQ demodulation frequency")
        parser.add_argument("--n_periods", type=float, default=5, help="Matched filter length")
        parser.add_argument("--matched_filter", type=int, nargs="?", default=0, help="Apply matched filter, set to 1 to run during forward pass, 2 to run during preprocessing phase (before adding noise)")

        parser.add_argument("--rand_output_crop", type=int, help="Subsample phase signal")
        parser.add_argument("--rand_scale", type=float, nargs="*", help="Random scaling range [min max] -- (10 ** rand_scale)")
        parser.add_argument("--rand_gain", type=float, nargs="*", help="Random gain coefficient range [min max] -- (10 ** rand_gain)")

        parser.add_argument("--n_inputs", type=int, default=1, help="Number of input layers")
        parser.add_argument("--n_outputs", type=int, default=1, help="Number of output layers")
        parser.add_argument("--scale_losses", type=float, nargs="*", help="Scale each layer of the loss function by given value")

        return parser

    def forward(self, x) -> torch.Tensor:
        # Matched filter
        if self.hparams.matched_filter == 1:
            x = self._matched_filter(x)

        # compute IQ phase if in phase_inv mode
        if self.hparams.phase_inv:
            x = self._phase(x)

        # Decimation
        if self.hparams.decimation != 1:
            x = x[..., ::self.hparams.decimation]

        # Apply network
        x = self._net((x, []))

        return x

    def _matched_filter(self, x):
        sampling_freq = 40e6

        samples_per_cycle = sampling_freq / self.hparams.center_freq
        n_samples = np.ceil(samples_per_cycle * self.hparams.n_periods + 1)

        signal = torch.sin(torch.arange(n_samples, device=x.device) / samples_per_cycle * 2 * np.pi) * torch.from_numpy(gaussian(n_samples, (n_samples - 1) / 6).astype(np.single)).to(x.device)

        return torch.nn.functional.conv1d(x.reshape(x.shape[:2] + (-1,)), signal.reshape(1, 1, -1), padding="same").reshape(x.shape)

    def _phase(self, x):
        f = self.hparams.center_freq
        F = 40e6
        N = x.shape[-1]

        n = int(round(f * N / F))

        X = torch.fft.fft(x, dim=-1)
        X[..., (2 * n + 1):] = 0
        X[..., :(2 * n + 1)] *= torch.from_numpy(gaussian(2 * n + 1, 2 * n  / 6).astype(np.single)).to(x.device)
        X = X.roll(-n, dims=-1)
        x = torch.fft.ifft(X, dim=-1)

        return x.angle()

    def _preprocess(self, x):
        # Matched filter
        if self.hparams.matched_filter == 2:
            x = self._matched_filter(x)

        #  Gaussian (normal) noise - random scaling, normalized to signal STD
        if (ns := self.hparams.noise_std) and len(ns):
            scl = ns[0] if len(ns) == 1 else torch.rand([x.shape[0]] + [1] * 3).to(x.device) * (ns[-1] - ns[-2]) + ns[-2]
            scl *= x.std()
            x += torch.empty_like(x).normal_() * scl

        # Random multiplicative scaling
        if (rs := self.hparams.rand_scale) and len(rs):
            x *= 10 ** (torch.rand([x.shape[0]] + [1] * 3).to(x.device) * (rs[-1] - rs[-2]) + rs[-2])

        # Random exponential gain
        if (gs := self.hparams.rand_gain) and len(gs):
            gain = torch.FloatTensor([10.0]).to(x.device) ** \
                (torch.rand([x.shape[0]] + [1] * 3).to(x.device) * ((gs[-1] - gs[-2]) + gs[-2]) *
                 torch.linspace(0, 1, x.shape[-1]).to(x.device).view(1, 1, 1, -1))
            x *= gain

        # Quantization noise, to emulated ADC
        if (quantization := self.hparams.quantization) is not None:
            x = (x * quantization).round() * (1.0 / quantization)

        # Randomly zero out some of the channels
        if (rand_drop := self.hparams.rand_drop) and len(rand_drop):
            if len(rand_drop) == 1:
                rand_drop = [0, ] + rand_drop

            for i in range(x.shape[0]):
                lines = np.random.randint(0, x.shape[2], np.random.randint(rand_drop[0], rand_drop[1] + 1))
                x[i, :, lines, :] = 0.

        return x

    def _log_losses(self, outputs: torch.Tensor, labels: torch.Tensor, prefix: str = ""):
        diff = torch.abs(labels.detach() - outputs.detach())

        s1 = int(diff.shape[-1] * (1.0 / 3.0))
        s2 = int(diff.shape[-1] * (2.0 / 3.0))

        for i in range(diff.shape[1]):
            tag = f"{i}_" if diff.shape[1] > 1 else ""

            losses = {
                f"{prefix + tag}rmse":  torch.sqrt(torch.mean(diff[:, i, ...] * diff[:, i, ...])).item(),
                f"{prefix + tag}mean":  torch.mean(diff[:, i, ...]).item(),
                f"{prefix + tag}short": torch.mean(diff[:, i, :, :s1]).item(),
                f"{prefix + tag}med":   torch.mean(diff[:, i, :, s1:s2]).item(),
                f"{prefix + tag}long":  torch.mean(diff[:, i, :, s2:]).item()}

            self.log_dict(losses, prog_bar=True)

    def training_step(self, batch, batch_idx):
        if self.hparams.random_mirror:
            mirror = np.random.randint(0, 2, batch[0].shape[0])

            for b in batch:
                for i, m in enumerate(mirror):
                    if not m:
                        continue

                    b[i, ...] = b[i, :, range(b.shape[-2] - 1, -1, -1), :]  # Pytorch does not handle negative steps

        loss = self._common_step(batch, batch_idx, "train_")

        if self.hparams.normalize_net:
            for W in self.parameters():
                loss += self.hparams.normalize_net * W.norm(2)

        return loss

    def validation_step(self, batch, batch_idx):
        return self._common_step(batch, batch_idx, "validate_")

    def test_step(self, batch, batch_idx):
        return self._common_step(batch, batch_idx, "test_")

    def predict_step(self, batch, batch_idx):
        x = batch[0]

        x = self._preprocess(x)
        z = self(x)

        if isinstance(z, tuple):
            z = z[0]

        return z

    def _common_step(self, batch, batch_idx, prefix):
        x, y = batch

        if self.hparams.rand_output_crop:
            crop = np.random.randint(0, self.hparams.rand_output_crop, batch[0].shape[0])

            for i, c in enumerate(crop):
                if not c:
                    continue

                x[i, :, :-c, :] = x[i, :, c:, :].clone()
                y[i, :, :-c*2, :] = \
                    y[i, :, c*2-1:-1, :].clone() if np.random.randint(2) else \
                        y[i, :, c*2:, :].clone()

            x = x[..., :-self.hparams.rand_output_crop, :]
            y = y[..., :-self.hparams.rand_output_crop*2, :]

        x = self._preprocess(x)
        z = self(x)

        outputs = z[0] if isinstance(z, tuple) or isinstance(z, list) else z
        self._log_losses(outputs, y, prefix)

        if (self.hparams.scale_losses) and len(self.hparams.scale_losses):
            s = torch.FloatTensor(self.hparams.scale_losses).to(y.device).view(1, -1, 1, 1)
            loss = F.mse_loss(s * z, s * y)
        else:
            loss = F.mse_loss(y, outputs)

        self.log(prefix + "loss", np.sqrt(loss.item()))

        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate)
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer, self.hparams.lr_sched_step, self.hparams.lr_sched_gamma)

        return [optimizer], [scheduler]


class DownStep(nn.Module):
    """
    Down scaling step in the encoder decoder network
    """
    def __init__(self, in_channels: int, out_channels: int, kernel_size: tuple, stride: int = 1, pool: tuple = None) -> None:
        """Constructor

        Arguments:
            in_channels {int} -- Number of input channels for 2D convolution
            out_channels {int} -- Number of output channels for 2D convolution
            kernel_size {tuple} -- Convolution kernel size

        Keyword Arguments:
            stride {int} -- Stride of convolution, set to 1 to disable (default: {1})
            pool {tuple} -- max pulling size, set to None to disable (default: {None})
        """
        super(DownStep, self).__init__()

        self.c = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=kernel_size // 2)
        self.n = nn.BatchNorm2d(out_channels)
        self.pool = pool

    def forward(self, x: torch.tensor) -> torch.tensor:
        """Run the forward step

        Arguments:
            x {torch.tensor} -- input tensor

        Returns:
            torch.tensor -- output tensor
        """
        x = self.c(x)
        x = F.relu(x)
        if self.pool is not None:
            x = F.max_pool2d(x, self.pool)
        x = self.n(x)

        return x


class UpStep(nn.Module):
    """
    Up scaling step in the encoder decoder network
    """
    def __init__(self, in_channels: int, out_channels: int, kernel_size: int, scale_factor: int = 2) -> None:
        """Constructor

        Arguments:
            in_channels {int} -- Number of input channels for 2D convolution
            out_channels {int} -- Number of output channels for 2D convolution
            kernel_size {int} -- Convolution kernel size

        Keyword Arguments:
            scale_factor {int} -- Upsampling scaling factor (default: {2})
        """
        super(UpStep, self).__init__()

        self.c = nn.Conv2d(in_channels, out_channels, kernel_size, padding=kernel_size // 2)
        self.n = nn.BatchNorm2d(out_channels)
        self.scale_factor = scale_factor

    def forward(self, x: torch.tensor) -> torch.tensor:
        """Run the forward step

        Arguments:
            x {torch.tensor} -- input tensor

        Returns:
            torch.tensor -- output tensor
        """
        if isinstance(x, tuple):
            x = x[0]

        if self.scale_factor != 1:
            x = F.interpolate(x, scale_factor=self.scale_factor)

        x = self.c(x)
        x = F.relu(x)
        x = self.n(x)

        return x


class Compress(nn.Module):
    """
    Up scaling step in the encoder decoder network
    """
    def __init__(self, in_channels: int, out_channels: int = 1, kernel_size: int = 1, scale_factor: int = 1) -> None:
        """Constructor

        Arguments:
            in_channels {int} -- [description]

        Keyword Arguments:
            out_channels {int} -- [description] (default: {1})
            kernel_size {int} -- [description] (default: {1})
        """
        super(Compress, self).__init__()

        self.scale_factor = scale_factor

        self.c = nn.Conv2d(in_channels, out_channels, kernel_size, padding=kernel_size // 2)

    def forward(self, x: torch.tensor) -> torch.tensor:
        """Run the forward step

        Arguments:
            x {torch.tensor} -- input tensor

        Returns:
            torch.tensor -- output tensor
        """
        if isinstance(x, tuple) or isinstance(x, list):
            x = x[0]

        x = self.c(x)

        if self.scale_factor != 1:
            x = F.interpolate(x, scale_factor=self.scale_factor)

        return x


class DownBlock(nn.Module):
    def __init__(
            self,
            in_chan: int, inter_chan: int, out_chan: int,
            kernel_size: int = 3, stride: int = 1, pool: tuple = None,
            push: bool = False,
            layers: int = 3):
        super().__init__()

        self.s = []
        for i in range(layers):
            self.s.append(deepcopy(DownStep(
                in_chan if i == 0 else inter_chan,
                inter_chan if i < layers - 1 else out_chan,
                kernel_size,
                1 if i < layers - 1 else stride,
                None if i < layers - 1 else pool)))
        self.s = nn.Sequential(*self.s)

        self.push = push

    def forward(self, x: torch.tensor) -> torch.tensor:
        i, s = x

        i = self.s(i)

        if self.push:
            s.append(i)

        return i, s


class UpBlock(nn.Module):
    def __init__(
            self,
            in_chan: int, out_chan: int,
            kernel_size: int, scale_factor: int = 2,
            pop: bool = False,
            layers: int = 3):
        super().__init__()

        self.s = []
        for i in range(layers):
            self.s.append(deepcopy(UpStep(
                in_chan if i == 0 else out_chan,
                out_chan,
                kernel_size,
                1 if i < layers - 1 else scale_factor)))
        self.s = nn.Sequential(*self.s)

        self.pop = pop

    def forward(self, x: torch.tensor) -> torch.tensor:
        i, s = x

        if self.pop:
            i = torch.cat((i, s.pop()), dim=1)

        i = self.s(i)

        return i, s