larshubacher's picture
Add SetFit model
eceb6e5 verified
|
raw
history blame
6.13 kB
metadata
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      Immer alles super - top Preise & superschnelle Lieferung - bin schon seit
      Jahren zufriedene Kundin von Digitec 😁👌🏼 …
  - text: >-
      Ich bin bereits seit sehr vielen Jahren Kundin der UBS. Manchmal bin auch
      ich mit der Geschäftspolitik der Bank nicht 100 % einverstanden. Absolut
      positiv ist jedoch, dass man als Kunde ernst genommen und, wie ich meine,
      auch gut beraten wird. Die Mitarbeitenden sind ausserordentlich freundlich
      und hilfsbereit, sowohl vor Ort als auch bei allfälligen telefonischen
      Fragen.
  - text: Gute Beratung, schnell und günstig.
  - text: |-
      Toller Servis! 👌🏽
      Ein paar bezahlbare Parkplätze gibts direkt vorne. …
  - text: Schnelle Abholung, schneller Service
inference: false
model-index:
  - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.06060606060606061
            name: Accuracy

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.0606

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("larshubacher/setfit-paraphrase-mpnet-base-v2-ccbuzz")
# Run inference
preds = model("Gute Beratung, schnell und günstig.")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 49.2344 266

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0031 1 0.2424 -
0.1562 50 0.2253 -
0.3125 100 0.1914 -
0.4688 150 0.0894 -
0.625 200 0.2011 -
0.7812 250 0.1924 -
0.9375 300 0.1516 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.40.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}