--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Immer alles super - top Preise & superschnelle Lieferung - bin schon seit Jahren zufriedene Kundin von Digitec 😁👌🏼 … - text: Ich bin bereits seit sehr vielen Jahren Kundin der UBS. Manchmal bin auch ich mit der Geschäftspolitik der Bank nicht 100 % einverstanden. Absolut positiv ist jedoch, dass man als Kunde ernst genommen und, wie ich meine, auch gut beraten wird. Die Mitarbeitenden sind ausserordentlich freundlich und hilfsbereit, sowohl vor Ort als auch bei allfälligen telefonischen Fragen. - text: Gute Beratung, schnell und günstig. - text: 'Toller Servis! 👌🏽 Ein paar bezahlbare Parkplätze gibts direkt vorne. …' - text: Schnelle Abholung, schneller Service inference: false model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.06060606060606061 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a OneVsRestClassifier instance - **Maximum Sequence Length:** 512 tokens ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.0606 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("larshubacher/setfit-paraphrase-mpnet-base-v2-ccbuzz") # Run inference preds = model("Gute Beratung, schnell und günstig.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 49.2344 | 266 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0031 | 1 | 0.2424 | - | | 0.1562 | 50 | 0.2253 | - | | 0.3125 | 100 | 0.1914 | - | | 0.4688 | 150 | 0.0894 | - | | 0.625 | 200 | 0.2011 | - | | 0.7812 | 250 | 0.1924 | - | | 0.9375 | 300 | 0.1516 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.40.2 - PyTorch: 2.5.1+cu121 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```