File size: 1,029 Bytes
d282e26 b179afb d282e26 b179afb 1a3f5e6 b179afb 1a3f5e6 b179afb 1a3f5e6 d282e26 b179afb 1a3f5e6 b179afb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
---
language:
- vi
base_model:
- VietAI/vit5-base
---
A model fine-tuned for sentiment analysis based on [VietAI/vit5-base](https://huggingface.co/vinai/phobert-base).
Labels:
- NEG: Negative
- POS: Positive
- NEU: Neutral
Dataset: Comments on Shoppe (https://shopee.vn/)
## Usage
```python
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("lamsytan/sentiment-analysis-base-phobert")
model = AutoModelForSequenceClassification.from_pretrained("lamsytan/sentiment-analysis-base-phobert")
sentence = "Áo đẹp lắm nhá lần sau sẽ ghé tiếp ạ"
inputs = tokenizer(sentence, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
print(probabilities.tolist())
# Output:
# [[0.010827462188899517, 0.9538241624832153, 0.035348404198884964]]
# ^ ^ ^ |