File size: 16,094 Bytes
70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b 7b059e5 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 70e575b ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 70e575b ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 70e575b ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 7b059e5 ed1b113 cd35978 70e575b ed1b113 7b059e5 ed1b113 70e575b 7b059e5 ed1b113 7b059e5 70e575b ed1b113 70e575b ed1b113 7b059e5 ed1b113 7b059e5 70e575b ed1b113 7b059e5 70e575b ed1b113 70e575b 7b059e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
from tqdm.notebook import tqdm
import torch
import torch.nn as nn
import copy
from .modeling_phi3_v import Phi3VForCausalLM, Phi3MLP
from .configuration_phi3_v import Phi3VConfig
from torch.optim import Adam
from typing import Optional, Tuple
from transformers import (
PreTrainedModel,
AutoConfig,
)
import torch.nn.functional as F
import matplotlib.pyplot as plt
# Define the Gating Layer
class GatingLayer(nn.Module):
def __init__(self, input_dim, num_experts, k, layer_dtype=torch.float16):
super(GatingLayer, self).__init__()
self.num_experts = num_experts
self.k = k
self.gate = nn.Linear(input_dim, num_experts).to(dtype=layer_dtype)
def forward(self, x):
gate_scores = torch.softmax(self.gate(x), dim=-1)
topk_values, topk_indices = torch.topk(gate_scores, self.k, dim=-1)
topk_values = F.softmax(topk_values, dim=-1)
return topk_values, topk_indices
class MoE(nn.Module):
def __init__(self, input_dim, experts, gating_layer, config):
super(MoE, self).__init__()
self.experts = nn.ModuleList(experts)
self.gating_layer = gating_layer
self.output_dim = config.hidden_size
def forward(self, x):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
gate_values, gate_indices = self.gating_layer(x)
batch_size, seq_length, _ = x.size()
# Stack all expert parameters for efficient processing
expert_outputs = []
for expert in self.experts:
up_states = expert.gate_up_proj(x.view(-1, x.size(-1))) # Flatten to [batch_size * seq_length, input_dim]
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * expert.activation_fn(gate)
expert_output = expert.down_proj(up_states)
expert_outputs.append(expert_output.view(batch_size, seq_length, -1))
expert_outputs = torch.stack(expert_outputs, dim=-1) # Shape: [batch_size, seq_length, hidden_size, num_experts]
# Use torch.gather to select the expert outputs based on gate_indices
expanded_gate_indices = gate_indices.unsqueeze(-2).expand(-1, -1, self.output_dim, -1) # Shape: [batch_size, seq_length, hidden_size, k]
selected_expert_outputs = torch.gather(expert_outputs, -1, expanded_gate_indices) # Shape: [batch_size, seq_length, hidden_size, k]
# Weight the selected expert outputs by gate values
gate_values = gate_values.unsqueeze(-2) # Shape: [batch_size, seq_length, 1, k]
weighted_expert_outputs = selected_expert_outputs * gate_values # Shape: [batch_size, seq_length, hidden_size, k]
# Sum the weighted expert outputs across the k dimension
moe_output = weighted_expert_outputs.sum(dim=-1) # Shape: [batch_size, seq_length, hidden_size]
return moe_output.to(self.gating_layer.gate.weight.dtype)
# Define the ModifiedPhi3DecoderLayer Layer
class ModifiedPhi3DecoderLayer(nn.Module):
def __init__(self, original_layer, moe_layer):
super(ModifiedPhi3DecoderLayer, self).__init__()
self.self_attn = original_layer.self_attn
self.mlp = moe_layer
self.input_layernorm = original_layer.input_layernorm
self.resid_attn_dropout = original_layer.resid_attn_dropout
self.resid_mlp_dropout = original_layer.resid_mlp_dropout
self.post_attention_layernorm = original_layer.post_attention_layernorm
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
]:
residual = hidden_states
with torch.autocast(device_type="cuda", dtype=hidden_states.dtype):
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
attn_outputs = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
attn_output = attn_outputs[0]
hidden_states = residual + self.resid_attn_dropout(attn_output)
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_mlp_dropout(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
if use_cache:
outputs += (attn_outputs[2],)
return outputs
#Define Phi3VForCausalLMMoEConfig
class Phi3VForCausalLMMoEConfig(Phi3VConfig):
model_type = "phi3_v_moe"
def __init__(self, config=None, k=1, num_expert_models=2, use_embeddings_in_router=False, **kwargs):
if config is not None:
kwargs.update(config.to_dict())
super().__init__(**kwargs)
self.k = k
self.num_expert_models = num_expert_models
self.architectures = "Phi3VForCausalLMMoE"
self.auto_map = {
"AutoConfig": "moe_phi3_v.Phi3VForCausalLMMoEConfig",
"AutoModelForCausalLM": "moe_phi3_v.Phi3VForCausalLMMoE",
}
self.use_embeddings_in_router=use_embeddings_in_router
#Define MoE Model
class Phi3VForCausalLMMoE(Phi3VForCausalLM):
config_class = Phi3VForCausalLMMoEConfig
def __init__(
self,
config,
base_model=None,
expert_models=None,
layer_dtype=torch.bfloat16,
**kwargs,
):
super().__init__(config)
self.layer_dtype = layer_dtype
self.custom_device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
)
k = self.config.k
self.num_layers = len(base_model.model.layers) if base_model else 0
self.config.auto_map = {
"AutoConfig": "moe_phi3_v.Phi3VForCausalLMMoEConfig",
"AutoModelForCausalLM": "moe_phi3_v.Phi3VForCausalLMMoE",
}
self.use_embeddings_in_router=config.use_embeddings_in_router
print ("Use embeddigs in router: ", self.use_embeddings_in_router )
self.model = base_model or Phi3VForCausalLM(
self.config
)
if base_model and expert_models:
self.num_expert_models = len(expert_models)
self._init_moe_layers(base_model, expert_models, k, layer_dtype)
else:
print(
"Init function called and generating dummy experts: k=",
k,
"experts=",
self.config.num_expert_models,
)
num_dummy_experts = self.config.num_expert_models
self._init_moe_layers_with_dummy_experts(
self.model, k, num_dummy_experts, layer_dtype
)
self.config.model_type = "phi3_v_moe"
def _init_base_model(self):
return PreTrainedModel(self.config)
def _init_moe_layers(self, base_model, expert_models, k, layer_dtype):
self.num_layers = len(base_model.model.layers)
for i in tqdm(range(self.num_layers)):
experts = []
for expert_model in expert_models:
expert = copy.deepcopy(expert_model.model.layers[i].mlp).to(
dtype=layer_dtype
)
experts.append(expert)
gating_layer = GatingLayer(
input_dim=self.config.hidden_size,
num_experts=len(experts),
k=k,
layer_dtype=layer_dtype,
)
moe_layer = MoE(
input_dim=self.config.hidden_size,
experts=experts,
gating_layer=gating_layer,
config=self.config,
).to(dtype=layer_dtype)
self.model.model.layers[i] = ModifiedPhi3DecoderLayer(
self.model.model.layers[i], moe_layer
).to(dtype=layer_dtype)
def _init_moe_layers_with_dummy_experts(
self, base_model, k, num_dummy_experts, layer_dtype
):
self.num_layers = len(base_model.model.layers)
for i in tqdm(range(self.num_layers)):
experts = []
for _ in range(num_dummy_experts):
dummy_expert = Phi3MLP(self.config).to(dtype=layer_dtype)
experts.append(dummy_expert)
gating_layer = GatingLayer(
input_dim=self.config.hidden_size,
num_experts=len(experts),
k=k,
layer_dtype=layer_dtype,
)
moe_layer = MoE(
input_dim=self.config.hidden_size,
experts=experts,
gating_layer=gating_layer,
config=self.config,
).to(dtype=layer_dtype)
self.model.model.layers[i] = ModifiedPhi3DecoderLayer(
self.model.model.layers[i], moe_layer
).to(dtype=layer_dtype)
def forward(self, *args, **kwargs):
return self.model.forward(*args, **kwargs)
def generate(self, *args, **kwargs):
return self.model.generate(*args, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
# Initialize the model using the superclass method
model = super(Phi3VForCausalLMMoE, cls).from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
return model
def plot_loss_histories(self, all_loss_histories, loss_steps, filename="loss_history.svg"):
plt.figure(figsize=(12, 8))
for layer_idx, loss_history in enumerate(all_loss_histories):
plt.plot(
range(0, len(loss_history) * loss_steps, loss_steps),
loss_history,
label=f'Layer {layer_idx}',
linewidth=2, # Thicker line
marker='o' # Circle marker for each data point
)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Loss History per Layer, MoE Gating Network')
plt.legend()
plt.grid(True)
try:
plt.savefig(filename)
except:
print("Figure file save failed...")
plt.show()
def train_gating_layer_params_from_hidden_states(self, processor, prompts_per_expert, epochs=1000, loss_steps=100,
lr=1e-4, layer_offset=0):
self.to(self.custom_device)
self.eval()
print ('btype:', self.layer_dtype, 'device=', self.custom_device)
all_gating_layer_params = []
all_loss_histories = [] # To store loss histories for each layer
expert_hidden_states_per_layer = [[] for _ in range(self.num_layers)]
# Collect hidden states for each expert
for prompts in tqdm(prompts_per_expert, desc="Processing Prompts"):
for prompt in tqdm(prompts, desc="Processing Single Prompt", leave=False):
inputs = processor(text=prompt['text'], images=prompt['image'], return_tensors="pt").to(self.custom_device).to(self.layer_dtype)
with torch.no_grad():
outputs = self.model(**inputs, output_hidden_states=True)
hidden_states = outputs.hidden_states
for layer_idx in tqdm(range(self.num_layers)):
hidden_state = hidden_states[layer_idx+layer_offset].mean(dim=1) # Averaging over the sequence dimension
expert_hidden_states_per_layer[layer_idx].append(hidden_state)
# Train the gating layers
for layer_idx in tqdm(range(self.num_layers), desc="Training Gating Layers"):
print(f"Training gating layer parameters for layer {layer_idx}")
# Ensure we have hidden states collected for the current layer
if not expert_hidden_states_per_layer[layer_idx]:
raise ValueError(f"No hidden states collected for layer {layer_idx}")
# Aggregate hidden states for each expert and stack them
expert_hidden_states = []
num_prompts_per_expert = len(prompts_per_expert[0])
for i in range(len(prompts_per_expert)):
hidden_states_for_expert = expert_hidden_states_per_layer[layer_idx][i * num_prompts_per_expert: (i + 1) * num_prompts_per_expert]
hidden_state_avg = torch.stack(hidden_states_for_expert).mean(dim=0)
expert_hidden_states.append(hidden_state_avg)
expert_hidden_states = torch.stack(expert_hidden_states).to(self.layer_dtype)
input_dim = self.config.hidden_size
num_experts = self.config.num_expert_models
class SimpleGatingLayer(nn.Module):
def __init__(self, input_dim, num_experts, layer_dtype=torch.bfloat16):
super(SimpleGatingLayer, self).__init__()
self.gate = nn.Linear(input_dim, num_experts).to(dtype=layer_dtype)
def forward(self, x):
#return torch.softmax(self.gate(x), dim=-1)
return self.gate(x)
gating_layer = SimpleGatingLayer(self.config.hidden_size, num_experts, layer_dtype=self.layer_dtype).to(self.custom_device)
criterion = nn.CrossEntropyLoss()
optimizer = Adam(gating_layer.parameters(), lr=lr)
loss_history = []
for epoch in tqdm(range(epochs), desc=f"Training Gating Layer {layer_idx}"):
optimizer.zero_grad()
# Reshape expert_hidden_states to match (batch_size, input_dim)
expert_hidden_states_reshaped = expert_hidden_states.view(-1, input_dim)
outputs = gating_layer(expert_hidden_states_reshaped)
labels = torch.arange(num_experts).to(self.custom_device)
#print ("outputs, labels" , outputs.shape, labels.shape)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if epoch % loss_steps == 0:
loss_history.append(loss.item())
all_loss_histories.append(loss_history)
all_gating_layer_params.append(gating_layer.state_dict())
self.plot_loss_histories(all_loss_histories, loss_steps)
return all_gating_layer_params
def set_gating_layer_params(self, gating_layer_params):
for layer_idx, params in enumerate(gating_layer_params):
self.model.model.layers[layer_idx].mlp.gating_layer.load_state_dict(params)
def freeze_except_gating_layers(model):
# freeze_except_gating_layers(moe_model)
# Freeze all parameters
for param in model.parameters():
param.requires_grad = False
# Unfreeze gating layer parameters
for layer in model.model.model.layers:
for name, param in layer.mlp.gating_layer.named_parameters():
param.requires_grad = True
def un_freeze_all(model):
# freeze_except_gating_layers(moe_model)
# Freeze all parameters
for param in model.parameters():
param.requires_grad = True
from transformers import AutoConfig
AutoConfig.register("phi3_v_moe", Phi3VForCausalLMMoEConfig)
from transformers.models.auto.modeling_auto import MODEL_MAPPING
MODEL_MAPPING.update({"phi3_v_moe": Phi3VForCausalLMMoE})
|