File size: 3,598 Bytes
b2ecd51
 
 
f25416a
b2ecd51
 
 
 
 
 
 
 
e49b193
3e74033
e49b193
3e74033
9afe82f
fcb84f7
e49b193
 
 
 
48b1555
 
3c13ed1
5c251db
48b1555
 
f7605dc
5c251db
878f4ac
 
 
add44ef
59c5a49
878f4ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2ecd51
 
ca209e8
b2ecd51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a15c0e
b2ecd51
 
 
7a15c0e
b2ecd51
 
 
 
7a15c0e
b2ecd51
d63a29a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
language: 
  - en
thumbnail: "https://staticassetbucket.s3.us-west-1.amazonaws.com/GOT_naruto.png"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
datasets:
- lambdalabs/naruto-blip-captions
---

# Naruto diffusion
*Stable Diffusion fine tuned on Naruto by [Lambda Labs](https://lambdalabs.com/).*

__Try the live [text-to-naruto demo here](https://huggingface.co/spaces/lambdalabs/text-to-naruto)!__  
If you want more details on how to train your own Stable Diffusion variants, see this [example](https://github.com/LambdaLabsML/examples/tree/main/stable-diffusion-finetuning).

## About

Put in a text prompt and generate your own Naruto style image!

**Game of Thrones to Naruto**

![pk0.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/GOT_naruto.png)

**Marvel to Naruto**

![pk1.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/marvel_naruto.png)

## Prompt engineering matters

We find that prompt engineering does help produce compelling and consistent Naruto style portraits.
For example, writing prompts such as '*person_name* ninja portrait' or '*person_name* in the style of Naruto' tends to produce results that are closer to the style of Naruto character with the characteristic headband and other elements of costume.

Here are a few examples of prompts with and without prompt engineering that will illustrate that point.

**Bill Gates:**
![pk2.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/bill_gates_vanilla.png)
> Without prompt engineering

![pk3.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/bill_gates_ninja.png)
> With prompt engineering

**A cute bunny:**

![pk4.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/cute_bunny_vanilla.png)
> Without prompt engineering

![pk4.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/cute_bunny_ninja.png)
> With prompt engineering



## Usage

To run model locally:
```bash
!pip install diffusers==0.3.0
!pip install transformers scipy ftfy
```

```python
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast

pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/sd-naruto-diffusers", torch_dtype=torch.float16)  
pipe = pipe.to("cuda")

prompt = "Yoda"
scale = 10
n_samples = 4

# Sometimes the nsfw checker is confused by the Naruto images, you can disable
# it at your own risk here
disable_safety = False

if disable_safety:
  def null_safety(images, **kwargs):
      return images, False
  pipe.safety_checker = null_safety

with autocast("cuda"):
  images = pipe(n_samples*[prompt], guidance_scale=scale).images

for idx, im in enumerate(images):
  im.save(f"{idx:06}.png")
```

## Model description

Trained on [BLIP captioned Naruto images](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) using 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for around 30,000 step (about 12 hours, at a cost of about $20).

## Links


- [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers)
- [Captioned Naruto dataset](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions)
- [Model weights in Diffusers format](https://huggingface.co/lambdalabs/sd-naruto-diffusers)
- [Original model weights](https://huggingface.co/justinpinkney/pokemon-stable-diffusion)
- [Naruto diffusers repo](https://github.com/eolecvk/naruto-sd)

Trained by [Eole Cervenka](https://www.linkedin.com/in/eole-cervenka/) after the work of [Justin Pinkney](https://justinpinkney.com) ([@Buntworthy](https://twitter.com/Buntworthy)) at [Lambda Labs](https://lambdalabs.com/).