File size: 1,878 Bytes
b8f4219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2cdb7
 
 
 
 
b8f4219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e2cdb7
 
 
 
b8f4219
 
 
 
2e2cdb7
 
b8f4219
2e2cdb7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: AraElectra-finetuned-fnd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# AraElectra-finetuned-fnd

This model is a fine-tuned version of [aubmindlab/araelectra-base-discriminator](https://huggingface.co/aubmindlab/araelectra-base-discriminator) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6073
- Macro F1: 0.7629
- Accuracy: 0.7708
- Precision: 0.7646
- Recall: 0.7616

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 25
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:|
| 0.5248        | 1.0   | 1597 | 0.4960          | 0.7416   | 0.7546   | 0.7508    | 0.7377 |
| 0.4308        | 2.0   | 3194 | 0.4770          | 0.7535   | 0.7666   | 0.7647    | 0.7490 |
| 0.3386        | 3.0   | 4791 | 0.5201          | 0.7614   | 0.7684   | 0.7617    | 0.7611 |
| 0.2781        | 4.0   | 6388 | 0.6073          | 0.7629   | 0.7708   | 0.7646    | 0.7616 |


### Framework versions

- Transformers 4.27.4
- Pytorch 1.13.0
- Datasets 2.1.0
- Tokenizers 0.13.2